17 research outputs found

    Rat cities and beehive worlds: density and design in the modern city

    Get PDF
    Nestled among E. M. Forster's careful studies of Edwardian social mores is a short story called "The Machine Stops." Set many years in the future, it is a work of science fiction that imagines all humanity housed in giant high-density cities buried deep below a lifeless surface. With each citizen cocooned in an identical private chamber, all interaction is mediated through the workings of "the Machine," a totalizing social system that controls every aspect of human life. Cultural variety has ceded to rigorous organization: everywhere is the same, everyone lives the same life. So hopelessly reliant is humanity upon the efficient operation of the Machine, that when the system begins to fail there is little the people can do, and so tightly ordered is the system that the failure spreads. At the story's conclusion, the collapse is total, and Forster's closing image offers a condemnation of the world they had built, and a hopeful glimpse of the world that might, in their absence, return: "The whole city was broken like a honeycomb. [⋯] For a moment they saw the nations of the dead, and, before they joined them, scraps of the untainted sky" (2001: 123). In physically breaking apart the city, there is an extent to which Forster is literalizing the device of the broken society, but it is also the case that the infrastructure of the Machine is so inseparable from its social structure that the failure of one causes the failure of the other. The city has-in the vocabulary of present-day engineers-"failed badly.

    Cdk2 Is Required for p53-Independent G2/M Checkpoint Control

    Get PDF
    The activation of phase-specific cyclin-dependent kinases (Cdks) is associated with ordered cell cycle transitions. Among the mammalian Cdks, only Cdk1 is essential for somatic cell proliferation. Cdk1 can apparently substitute for Cdk2, Cdk4, and Cdk6, which are individually dispensable in mice. It is unclear if all functions of non-essential Cdks are fully redundant with Cdk1. Using a genetic approach, we show that Cdk2, the S-phase Cdk, uniquely controls the G2/M checkpoint that prevents cells with damaged DNA from initiating mitosis. CDK2-nullizygous human cells exposed to ionizing radiation failed to exclude Cdk1 from the nucleus and exhibited a marked defect in G2/M arrest that was unmasked by the disruption of P53. The DNA replication licensing protein Cdc6, which is normally stabilized by Cdk2, was physically associated with the checkpoint regulator ATR and was required for efficient ATR-Chk1-Cdc25A signaling. These findings demonstrate that Cdk2 maintains a balance of S-phase regulatory proteins and thereby coordinates subsequent p53-independent G2/M checkpoint activation

    Reviewers in 2020

    No full text

    Reviewers in 2022

    No full text

    Into the second decade

    No full text
    Open Biology is 10 years old and we have much to celebrate. Open Biology launched as the Royal Society's first fully online, open access journal dedicated to cell and molecular biology. The underlying principle of Open Biology is to enable discoveries to be quickly and easily disseminated through the community, and in this vein in the first 10 years of the journal we have introduced format-free submission, mandated open peer review where the reviews and author responses are published with the paper, and established our enthusiastic Preprint Team under the guidance of Prof. Michael Ginger. Credit for most of this success is due to the guiding hand of David Glover, our founding editor, and the team at Royal Society Publishing

    Changes in soil organic carbon under perennial crops

    Get PDF
    This study evaluates the dynamics of soil organic carbon (SOC) under perennial crops across the globe. It quantifies the effect of change from annual to perennial crops and the subsequent temporal changes in SOC stocks during the perennial crop cycle. It also presents an empirical model to estimate changes in the SOC content under crops as a function of time, land use, and site characteristics. We used a harmonized global dataset containing paired‐comparison empirical values of SOC and different types of perennial crops (perennial grasses, palms, and woody plants) with different end uses: bioenergy, food, other bio‐products, and short rotation coppice. Salient outcomes include: a 20‐year period encompassing a change from annual to perennial crops led to an average 20% increase in SOC at 0–30 cm (6.0 ± 4.6 Mg/ha gain) and a total 10% increase over the 0–100 cm soil profile (5.7 ± 10.9 Mg/ha). A change from natural pasture to perennial crop decreased SOC stocks by 1% over 0–30 cm (−2.5 ± 4.2 Mg/ha) and 10% over 0–100 cm (−13.6 ± 8.9 Mg/ha). The effect of a land use change from forest to perennial crops did not show significant impacts, probably due to the limited number of plots; but the data indicated that while a 2% increase in SOC was observed at 0–30 cm (16.81 ± 55.1 Mg/ha), a decrease in 24% was observed at 30–100 cm (−40.1 ± 16.8 Mg/ha). Perennial crops generally accumulate SOC through time, especially woody crops; and temperature was the main driver explaining differences in SOC dynamics, followed by crop age, soil bulk density, clay content, and depth. We present empirical evidence showing that the FAO perennialization strategy is reasonable, underscoring the role of perennial crops as a useful component of climate change mitigation strategies
    corecore