348 research outputs found

    Phylogenetic relationships of typical antbirds (Thamnophilidae) and test of incongruence based on Bayes factors

    Get PDF
    BACKGROUND: The typical antbirds (Thamnophilidae) form a monophyletic and diverse family of suboscine passerines that inhabit neotropical forests. However, the phylogenetic relationships within this assemblage are poorly understood. Herein, we present a hypothesis of the generic relationships of this group based on Bayesian inference analyses of two nuclear introns and the mitochondrial cytochrome b gene. The level of phylogenetic congruence between the individual genes has been investigated utilizing Bayes factors. We also explore how changes in the substitution models affected the observed incongruence between partitions of our data set. RESULTS: The phylogenetic analysis supports both novel relationships, as well as traditional groupings. Among the more interesting novel relationship suggested is that the Terenura antwrens, the wing-banded antbird (Myrmornis torquata), the spot-winged antshrike (Pygiptila stellaris) and the russet antshrike (Thamnistes anabatinus) are sisters to all other typical antbirds. The remaining genera fall into two major clades. The first includes antshrikes, antvireos and the Herpsilochmus antwrens, while the second clade consists of most antwren genera, the Myrmeciza antbirds, the "professional" ant-following antbirds, and allied species. Our results also support previously suggested polyphyly of Myrmotherula antwrens and Myrmeciza antbirds. The tests of phylogenetic incongruence, using Bayes factors, clearly suggests that allowing the gene partitions to have separate topology parameters clearly increased the model likelihood. However, changing a component of the nucleotide substitution model had much higher impact on the model likelihood. CONCLUSIONS: The phylogenetic results are in broad agreement with traditional classification of the typical antbirds, but some relationships are unexpected based on external morphology. In these cases their true affinities may have been obscured by convergent evolution and morphological adaptations to new habitats or food sources, and genera like Myrmeciza antbirds and the Myrmotherula antwrens obviously need taxonomic revisions. Although, Bayes factors seem promising for evaluating the relative contribution of components to an evolutionary model, the results suggests that even if strong evidence for a model allowing separate topology parameters is found, this might not mean strong evidence for separate gene phylogenies, as long as vital components of the substitution model are still missing

    An unexpectedly long history of sexual selection in birds-of-paradise

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The birds-of-paradise (Paradisaeidae) form one of the most prominent avian examples of sexual selection and show a complex biogeographical distribution. The family has accordingly been used as a case-study in several significant evolutionary and biogeographical syntheses. As a robust phylogeny of the birds-of-paradise has been lacking, these hypotheses have been tentative and difficult to assess. Here we present a well supported species phylogeny with divergence time estimates of the birds-of-paradise. We use this to assess if the rates of the evolution of sexually selected traits and speciation have been excessively high within the birds-of-paradise, as well as to re-interpret biogeographical patterns in the group.</p> <p>Results</p> <p>The phylogenetic results confirm some traditionally recognized relationships but also suggest novel ones. Furthermore, we find that species pairs are geographically more closely linked than previously assumed. The divergence time estimates suggest that speciation within the birds-of-paradise mainly took place during the Miocene and the Pliocene, and that several polygynous and morphologically homogeneous genera are several million years old. Diversification rates further suggest that the speciation rate within birds-of-paradise is comparable to that of the enitre core Corvoidea.</p> <p>Conclusion</p> <p>The estimated ages of morphologically homogeneous and polygynous genera within the birds-of-paradise suggest that there is no need to postulate a particularly rapid evolution of sexually selected morphological traits. The calculated divergence rates further suggest that the speciation rate in birds-of-paradise has not been excessively high. Thus the idea that sexual selection could generate high speciation rates and rapid changes in sexual ornamentations is not supported by our birds-of-paradise data. Potentially, hybridization and long generation times in polygynous male birds-of-paradise have constrained morphological diversification and speciation, but external ecological factors on New Guinea may also have allowed the birds-of-paradise to develop and maintain magnificent male plumages. We further propose that the restricted but geographically complex distributions of birds-of-paradise species may be a consequence of the promiscuous breeding system.</p

    Primer registro del frutero pechinegro Pipreola lubomirskii (Aves, Cotingidae) en la vertiente occidental de los Andes

    Get PDF
    The black-chested fruiteater, Pipreola lubomirskii, is a cotinga reported as rare and of local distribution in the Northern Andes. Before the present report it only had been registered for the eastern slope of Peru and Ecuador, and in the southern Andes of Colombia. The present report extends its distribution to the montane forests of the Pacific slopes of Peruvian Andes, having been found in the cloud forests of the Zaña valley, in the department of Cajamarca (6º50’-6º52’ latitude S, 79º10’-79º07’ longitude W).El frutero pechinegro, Pipreola lubomirskii, es un cotíngido registrado como raro y de distribución local en los Andes del Norte. Antes del presente registro sólo había sido reportado para la vertiente oriental del Perú y Ecuador, así como los Andes del sur de Colombia. El presente registro amplia su distribución a los bosques montañosos de la vertiente occidental de los Andes peruanos, habiéndose encontrado en los bosques nublados del valle del río Zaña, en el departamento de Cajamarca (6º50’-6º52’ latitud S, 79º10’-79º07’ longitud O)

    Kommentare

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47952/1/10336_2005_Article_BF01651911.pd

    Phenotypic divergence in two sibling species of shorebird: Common Snipe and Wilson’s Snipe (Charadriiformes: Scolopacidae)

    Get PDF
    Natural and social selection are among the main shapers of biological diversity but their relative importance in divergence remains understudied. Additionally, although neutral evolutionary processes may promote phenotypic divergence, their potential contribution in speciation is often overlooked in studies of comparative morphology. In this study, we investigated phenotypic differentiation in two allopatric shorebirds: the Palaearctic Common Snipe Gallinago gallinago and the Nearctic Wilson’s Snipe Gallinago delicata. Specimens of Common Snipe (n = 355 skins, n = 163 skeletons) and Wilson’s Snipe (n = 403 skins, n = 141 skeletons) in natural history collections were examined to quantify differences in skeletal and external measurements, and measures of wing and tail plumage variables. The species do not differ in skeletal variables except for the relatively larger sternum of the Common Snipe. The two species do not differ in multivariate wing size or shape (pointedness). Previously known plumage differences between these species were confirmed: the Common Snipe has fewer rectrices, longer and wider outermost rectrices, more extensive white on tips of the secondary feathers, and more white in the axillaries. Between-species variance in skeleton, primary length and plumage variables was greater than expected if drift was mainly responsible for phenotypic divergence, suggesting a role of selective processes. However, drift could not be rejected after adjusting for multiple comparisons. Differences in plumage traits were greater than in skeletal or external measurements. Because snipe use plumage traits in signalling, the results suggest a more rapid divergence in socially selected traits between these species than in traits related to resource use

    The role of evolutionary time, diversification rates and dispersal in determining the global diversity of a large radiation of passerine birds

    Get PDF
    Aim: Variation in species diversity among different geographic areas may result from differences in speciation and extinction rates, immigration and time for diversification. An area with high species diversity may be the result of a high net diversification rate, multiple immigration events from adjacent regions,anda long time available for the accumulation of species (know as the "time-for-speciation effect"). Here, we examine the relative importance of the three aforementionedprocesses in shaping the geographic diversity patterns of a large radiation of passerine birds. Location: Global Time period: Early Miocene to present Major taxa studied: Babblers (Aves: Passeriformes) Methods: Using a comprehensive phylogeny of extant species (~90% sampled) and distributions of the world's babblers, we reconstructed their biogeographic history and analysed the diversification dynamics. We examined how species richness correlates with the timing of regional colonization, the number of immigration events and the rate of speciation within all 13 geographic distribution regions. Results: We found thatbabblers likely originated in the Sino-Himalayan Mountains (SHM) in the early Miocene, suggesting a long time for diversification and species accumulation within the SHM. Regression analyses showed the regional diversity of babblers can be well explained by the timing of the first colonization within of these areas, while differences in rates of speciation or immigration have far weaker effects. Nonetheless, the rapid speciation of Zosteropsduring the Pleistocene has accounted for the increased diversification and accumulation of species in the oceanic islands. Main conclusions: Our results suggest that the global diversity patterns of babblers have predominantly been shaped by the time-for-speciation effect. Our findings also support an origin centred in tropical and subtropical parts of the SHM, with a cradle of recent diversification in the oceanic islands of the Indo-Pacific region, which provides new insights into the generation of global biodiversity hotspots.A near-complete phylogeny of babblers has been reconstructed in BEAST 1.8.4 based on 12 gene loci
    corecore