2,172 research outputs found

    Enantioselective Ruthenium-Catalyzed Ring-Closing Metathesis

    Get PDF
    The first enantioselective ruthenium olefin metathesis catalysts have been prepared, and high enantiomeric excesses (up to 90%) are observed in the desymmetrization of achiral trienes. A model consistent with the stereochemical outcome of the reactions is described and suggests side-on olefin binding and reorganization of the halide ligands

    Modulation of Multiple Sclerosis and its Animal Model experimental Autoimmune encephalomyelitis by Food and Gut Microbiota

    Get PDF
    Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination, axonal damage, and symptoms such as fatigue and disability. Although the cause of MS is not known, the infiltration of peripherally activated immune cells into the CNS has a key pathogenic role. Accumulating evidence supports an important role of diet and gut microbiota in immune-mediated diseases. Preclinical as well as clinical studies suggest a role for gut microbiota and dietary components in MS. Here, we review these recent studies on gut microbiota and dietary interventions in MS and its animal model experimental autoimmune encephalomyelitis. We also propose directions for future research

    Stereospecific decarboylative allylation of sulfones

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/ja104196x.Allyl sulfonyl acetic esters undergo highly stereospecific, palladium-catalyzed decarboxylative allylation. The reaction allows the stereospecific formation of tertiary homoallylic sulfones in high yield. In contrast to related reactions that proceed at -100 °C and require highly basic preformed organometallics, the decarboxylative coupling described herein occurs under mild non-basic conditions and requires no stoichiometric additives. Allylation of the intermediate α-sulfonyl anion is more rapid than racemization, leading to a highly enantiospecific process. DFT calculations indicate that the barrier for racemization is 9.9 kcal/mol and thus the barrier of allylation must be <9.9 kcal/mol

    Prospectus, December 13, 1995

    Get PDF
    https://spark.parkland.edu/prospectus_1995/1033/thumbnail.jp

    Emissions of Formaldehyde, Acetic Acid, Methanol, and Other Trace Gases from Biomass Fires in North Carolina Measured by Airborne Fourier Transform Infrared Spectroscopy

    Get PDF
    Biomass burning is an important source of many trace gases in the global troposphere. We have constructed an airborne trace gas measurement system consisting of a Fourier transform infrared spectrometer (FTIR) coupled to a “flow-through” multipass cell (AFTIR) and installed it on a U.S. Department of Agriculture Forest Service King Air B-90. The first measurements with the new system were conducted in North Carolina during April 1997 on large, isolated biomass fire plumes. Simultaneous measurements included Global Positioning System (GPS); airborne sonde; particle light scattering, CO, and CO2; and integrated filter and canister samples. AFTIR spectra acquired within a few kilometers of the fires yielded excess mixing ratios for 10 of the most common trace gases in the smoke: water, carbon dioxide, carbon monoxide, methane, formaldehyde, acetic acid, formic acid, methanol, ethylene, and ammonia. Emission ratios to carbon monoxide for formaldehyde, acetic acid, and methanol were each 2.5±1%. This is in excellent agreement with (and confirms the relevance of) our results from laboratory fires. However, these ratios are significantly higher than the emission ratios reported for these compounds in some previous studies of “fresh” smoke. We present a simple photochemical model calculation that suggests that oxygenated organic compounds should be included in the assessment of ozone formation in smoke plumes. Our measured emission factors indicate that biomass fires could account for a significant portion of the oxygenated organic compounds and HOx present in the tropical troposphere during the dry season. Our fire measurements, along with recent measurements of oxygenated biogenic emissions and oxygenated organic compounds in the free troposphere, indicate that these rarely measured compounds play a major, but poorly understood, role in the HOx, NOx, and O3 chemistry of the troposphere

    Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms

    Get PDF
    BackgroundAsthma is a chronic inflammatory disease involving diverse cells and mediators whose interconnectivity and relationships to asthma severity are unclear.ObjectiveWe performed a comprehensive assessment of TH17 cells, regulatory T cells, mucosal-associated invariant T (MAIT) cells, other T-cell subsets, and granulocyte mediators in asthmatic patients.MethodsSixty patients with mild-to-severe asthma and 24 control subjects underwent detailed clinical assessment and provided induced sputum, endobronchial biopsy, bronchoalveolar lavage, and blood samples. Adaptive and invariant T-cell subsets, cytokines, mast cells, and basophil mediators were analyzed.ResultsSignificant heterogeneity of T-cell phenotypes was observed, with levels of IL-13–secreting T cells and type 2 cytokines increased at some, but not all, asthma severities. TH17 cells and ??-17 cells, proposed drivers of neutrophilic inflammation, were not strongly associated with asthma, even in severe neutrophilic forms. MAIT cell frequencies were strikingly reduced in both blood and lung tissue in relation to corticosteroid therapy and vitamin D levels, especially in patients with severe asthma in whom bronchoalveolar lavage regulatory T-cell numbers were also reduced. Bayesian network analysis identified complex relationships between pathobiologic and clinical parameters. Topological data analysis identified 6 novel clusters that are associated with diverse underlying disease mechanisms, with increased mast cell mediator levels in patients with severe asthma both in its atopic (type 2 cytokine–high) and nonatopic forms.ConclusionThe evidence for a role for TH17 cells in patients with severe asthma is limited. Severe asthma is associated with a striking deficiency of MAIT cells and high mast cell mediator levels. This study provides proof of concept for disease mechanistic networks in asthmatic patients with clusters that could inform the development of new therapies

    Development of candidate rotavirus vaccines derived from neonatal strains in India

    Get PDF
    The need for a rotavirus vaccine in India is based on the enormous burden associated with the &lt;100,000 deaths due to rotavirus diarrhea that occur annually among Indian children. Two rotavirus strains identified during nosocomial outbreaks of rotavirus infection in New Delhi and Bangalore, India, more than a decade ago are being developed as live oral vaccines. Infected newborns had no symptoms, shed virus for up to 2 weeks after infection, mounted a robust immune response, and demonstrated protection against severe rotavirus diarrhea after reinfection. The 2 strains are naturally occurring bovine-human reassortants. The New Delhi strain, 116E, is characterized as having a P[11],G9 genotype, and the Bangalore strain, I321, is characterized as having a P[11],G10 genotype. The strains have been prepared as pilot lots for clinical trials to be conducted in New Delhi. This unique project, which is developing a new rotavirus vaccine in India with the use of Indian strains, an Indian manufacturer, and an Indian clinical development program, aims to expedite introduction of rotavirus vaccines in India

    Mice lacking paternal expression of imprinted 1 Grb10 are risk-takers

    Get PDF
    The imprinted genes Grb10 and Nesp influence impulsive behavior on a delay discounting task in an opposite manner. A recently developed theory suggests that this pattern of behavior may be representative of predicted effects of imprinted genes on tolerance to risk. Here we examine whether mice lacking paternal expression of Grb10 show abnormal behavior across a number of measures indicative of risk‐taking. Although Grb10 +/p mice show no difference from wild type (WT) littermates in their willingness to explore a novel environment, their behavior on an explicit test of risk‐taking, namely the Predator Odor Risk‐Taking task, is indicative of an increased willingness to take risks. Follow‐up tests suggest that this risk‐taking is not simply because of a general decrease in fear, or a general increase in motivation for a food reward, but reflects a change in the trade‐off between cost and reward. These data, coupled with previous work on the impulsive behavior of Grb10 +/p mice in the delayed reinforcement task, and taken together with our work on mice lacking maternal Nesp , suggest that maternally and paternally expressed imprinted genes oppositely influence risk‐taking behavior as predicted

    Excess Mucin Impairs Subglottic Epithelial Host Defense in Mechanically Ventilated Patients

    Get PDF
    Rationale: Aspiration of infective subglottic secretions causes ventilator-associated pneumonia (VAP) in mechanically ventilated patients. Mechanisms underlying subglottic colonization in critical illness have not been defined, limiting strategies for targeted prevention of VAP. Objectives: To characterize subglottic host defense dysfunction in mechanically ventilated patients in the intensive care unit (ICU). To determine whether subglottic mucin contributes to neutrophil phagocytic impairment and bacterial growth. Methods: Prospective subglottic sampling in mechanically ventilated patients (intubated for four or more days), and newly intubated control patients (intubated for less than 30 minutes). Isolation and culture of primary subglottic epithelial cells from controls. Laboratory analysis of host innate immune defenses. Measurements and Main Results: Twenty-four patients in the ICU and 27 newly intubated control patients were studied. Subglottic ICU samples had significantly reduced microbiological diversity and contained potential respiratory pathogens. The subglottic microenvironment in ICU was characterized by neutrophilic inflammation, significantly increased pro-inflammatory cytokines and neutrophil proteases, and altered physical properties of subglottic secretions, including accumulation of mucins. Subglottic mucin from ICU patients impaired the capacity of neutrophils to phagocytose and kill bacteria. Phagocytic function was reversible upon treatment with a mucolytic agent. Subglottic mucus promoted growth and invasion of bacterial pathogens in a novel air-liquid interface model of primary human subglottic epithelium. Conclusions: Mechanical ventilation in ICU is characterized by substantial mucin secretion and neutrophilic inflammation. Mucin impairs neutrophil dysfunction and promotes bacterial growth. Mucolytic agents reverse mucin-mediated neutrophil dysfunction. Enhanced mucus disruption and removal has potential to augment preventive benefits of subglottic drainage
    corecore