74 research outputs found

    Modelling of Wax Deposition by Perturbed Hard Sphere Chain Equation of State

    Get PDF
    This article presents a model to predict the wax appearance temperature (WAT) and the quantity of wax deposition in eight different n-alkane mixtures using a correlative technique. The perturbed hard sphere chain equation of state (PHSC EoS) was employed in conjunction with the multi-solid model to describe the liquid-liquid and solid-liquid equilibria. The results are compared with experimental data. The results showed that PHSC EoS for some mixture of n-alkanes can perceptibly outperform the sole solid solution theory, improving the modelling of wax deposition quantities and wax appearance temperature by giving predictions closer to experimental values

    Separation of CO2 from CH4 by pure PSF and PSF/PVP blend membranes : effects of type of nonsolvent, solvent, and PVP concentration

    Get PDF
    Complete CO2/CH4 gas separation was aimed in this study. Accordingly, asymmetric neat polysulfone (PSF) and PSF/polyvinylpyrrolidone (PVP) blend membranes were prepared by wet/wet phase inversion technique. The effects of two different variables such as type of external nonsolvent and type of solvent on morphology and gas separation ability of neat PSF membranes were examined. Moreover, the influence of PVP concentration on structure, thermal properties, and gas separation properties of PSF/PVP blend membrane were tested. The SEM results presented the variation in membrane morphology in different membrane preparation conditions. Atomic forced microscopic images displayed that surface roughness parameters increased significantly in higher PVP loading and then gas separation properties of membrane improved. Thermal gravimetric analysis confirms higher thermal stability of membrane in higher PVP loading. Differential scanning calorimetric results prove miscibility and compatibility of PSF and PVP in the blend membrane. The permeation results indicate that, the CO2 permeance through prepared PSF membrane reached the maximum (275 ± 1 GPU) using 1-methyl-2-pyrrolidone as a solvent and butanol (BuOH) as an external nonsolvent. While, a higher CO2/CH4 selectivity (5.75 ± 0.1) was obtained using N-N-dimethyl-acetamide (DMAc) as a solvent and propanol (PrOH) as an external nonsolvent. The obtained results show that PSF/PVP blend membrane containing 10 wt % of PVP was able to separate CO2 from CH4 completely up to three bar as feed pressure

    Carbon capture via aqueous ionic liquids intelligent modelling

    No full text
    With conventional thermodynamic models, it is challenging to estimate the solubility of a gas in the presence of impurities such as water (H2O). Intelligent models can be utilised for this goal in a computationally efficient manner. In this paper, the carbon dioxide (CO2) solubility in ionic liquids (ILs) containing water is predicted using three intelligence models: artificial neural network (ANN), support vector machines (SVM), and least square support vector machine (LSSVM). The shuffled complex evolution (SCE) is used to optimise the intelligent models SVM and LSSVM hyperparameters (σ2 and γ), whereas trial and error are used to determine the optimum numbers of neurons and layers for the ANN. To identify the most efficient model, the capabilities of applied intelligent models for determining solubility were compared. The findings show agreement between the experimental values and model estimations. Given that the coefficient-of-determination (R2) and root-mean-squared-error (RMSE) were found to be, respectively, 0.9965 and 0.0104 for the test data points, ANN is shown to be moderately more accurate than SVMs or LSSVM at predicting solubility. It can also be inferred that from a statistical point of view, when fed with parameters such as R2, RMSE, standard deviation (STD), and average-absolute-percentage-deviation (AARD), the ANN model demonstrated superior precision in predicting gas solubilities compared to the SVM and LSSVM models

    The role of heat recirculation and flame stabilization in the formation of NOX in a thermo-photovoltaic micro-combustor step wall

    No full text
    The health and durability of micro thermophotovoltaic systems are contingent upon the level of gaseous emissions of micro combustors regarding their small size, thickness, and compactness. In small combustion devices, the flame stabilization is achieved via conjugated heat transfer from the stabilized flame to the fresh reactant via the step of the micro-combustors. The step could also create a recirculation of products, and a stagnation zone for the fluid, as a result leading to the accumulation of pollutants. In turbulent H2 flame, the main attention is given to the NOX as no other noxious emission, especially carbon emission (CO, CO2, PAH, and VOC), form during the combustion of hydrogen. The existence of NOX in the presence of water, as in the combustion of hydrogen is prevalent, could lead to corrosion in combustor interior walls and other detrimental impacts for the ecosystem. In the presented work, micro-combustion of H2 flame in a cylinder with a step is simulated and the formation of nitrogen oxides is analyzed. The influence of different combustor specifications (equivalence ratio, solid materials) NOX species are discussed and evaluated. Results revealed nitrogen oxides form and accumulate in the vertical step of the microchannel and that the microchannel walls are more prone to the high concentrations of nitrogen oxides. The application of cavity promotes the two-dimensionality of flow, resulting in effective heat transfer from the hot gas to the cavity walls. This not only leads to flame anchoring to the cavity walls but also results in significant NOX
    corecore