2,802 research outputs found

    Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Get PDF
    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a \blue{dissipative} plasmonic material. Correspondingly, the ESWs transmute from Dyakonov--Tamm surface waves into surface--plasmon--polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results

    Polarization--universal rejection filtering by ambichiral structures made of indefinite dielectric--magnetic materials

    Full text link
    An ambichiral structure comprising sheets of an anisotropic dielectric material rejects normally incident plane waves of one circular polarization (CP) state but not of the other CP state, in its fundamental Bragg regime. However, if the same structure is made of an dielectric--magnetic material with indefinite permittivity and permeability dyadics, it may function as a polarization--universal rejection filter because two of the four planewave components of the electromagnetic field phasors in each sheet are of the positive--phase--velocity type and two are of the negative--phase--velocity type.Comment: Cleaned citations in the tex

    Predicted FeII Emission-Line Strengths from Active Galactic Nuclei

    Full text link
    We present theoretical FeII emission line strengths for physical conditions typical of Active Galactic Nuclei with Broad-Line Regions. The FeII line strengths were computed with a precise treatment of radiative transfer using extensive and accurate atomic data from the Iron Project. Excitation mechanisms for the FeII emission included continuum fluorescence, collisional excitation, self-fluorescence amoung the FeII transitions, and fluorescent excitation by Lyman-alpha and Lyman-beta. A large FeII atomic model consisting of 827 fine structure levels (including states to E ~ 15 eV) was used to predict fluxes for approximately 23,000 FeII transitions, covering most of the UV, optical, and IR wavelengths of astrophysical interest. Spectral synthesis for wavelengths from 1600 Angstroms to 1.2 microns is presented. Applications of present theoretical templates to the analysis of observations are described. In particular, we discuss recent observations of near-IR FeII lines in the 8500 Angstrom -- 1 micron region which are predicted by the Lyman-alpha fluorescence mechanism. We also compare our UV spectral synthesis with an empirical iron template for the prototypical, narrow-line Seyfert galaxy I Zw 1. The theoretical FeII template presented in this work should also applicable to a variety of objects with FeII spectra formed under similar excitation conditions, such as supernovae and symbiotic stars.Comment: 33 pages, 15 postscript figure

    Hybrid-Entanglement in Continuous Variable Systems

    Get PDF
    Entanglement is one of the most fascinating features arising from quantum-mechanics and of great importance for quantum information science. Of particular interest are so-called hybrid-entangled states which have the intriguing property that they contain entanglement between different degrees of freedom (DOFs). However, most of the current continuous variable systems only exploit one DOF and therefore do not involve such highly complex states. We break this barrier and demonstrate that one can exploit squeezed cylindrically polarized optical modes to generate continuous variable states exhibiting entanglement between the spatial and polarization DOF. We show an experimental realization of these novel kind of states by quantum squeezing an azimuthally polarized mode with the help of a specially tailored photonic crystal fiber

    The Origin of Fe II Emission in AGN

    Get PDF
    We used a very large set of models of broad emission line (BEL) clouds in AGN to investigate the formation of the observed Fe II emission lines. We show that photoionized BEL clouds cannot produce both the observed shape and observed equivalent width of the 2200-2800A Fe II UV bump unless there is considerable velocity structure corresponding to a microturbulent velocity parameter v_turb > 100 km/s for the LOC models used here. This could be either microturbulence in gas that is confined by some phenomenon such as MHD waves, or a velocity shear such as in the various models of winds flowing off the surfaces of accretion disks. The alternative way that we can find to simultaneously match both the observed shape and equivalent width of the Fe II UV bump is for the Fe II emission to be the result of collisional excitation in a warm, dense gas. Such gas would emit very few lines other than Fe II. However, since the collisionally excited gas would constitute yet another component in an already complicated picture of the BELR, we prefer the model involving turbulence. In either model, the strength of Fe II emission relative to the emission lines of other ions such as Mg II depends as much on other parameters (either v_turb or the surface area of the collisionally excited gas) as it does on the iron abundance. Therefore, the measurement of the iron abundance from the FeII emission in quasars becomes a more difficult problem.Comment: 23 pages. Accepted by Ap

    Benefits and barriers in the design of harmonized access agreements for international data sharing

    Get PDF
    In the past decade, there has been a surge in the number of sensitive human genomic and health datasets available to researchers via Data Access Agreements (DAAs) and managed by Data Access Committees (DACs). As this form of sharing increases, so do the challenges of achieving a reasonable level of data protection, particularly in the context of international data sharing. Here, we consider how excessive variation across DAAs can hinder these goals, and suggest a core set of clauses that could prove useful in future attempts to harmonize data governance

    Curvature tensors on distorted Killing horizons and their algebraic classification

    Full text link
    We consider generic static spacetimes with Killing horizons and study properties of curvature tensors in the horizon limit. It is determined that the Weyl, Ricci, Riemann and Einstein tensors are algebraically special and mutually aligned on the horizon. It is also pointed out that results obtained in the tetrad adjusted to a static observer in general differ from those obtained in a free-falling frame. This is connected to the fact that a static observer becomes null on the horizon. It is also shown that finiteness of the Kretschmann scalar on the horizon is compatible with the divergence of the Weyl component Ψ3\Psi_{3} or Ψ4\Psi_{4} in the freely falling frame. Furthermore finiteness of Ψ4\Psi_{4} is compatible with divergence of curvature invariants constructed from second derivatives of the Riemann tensor. We call the objects with finite Krestschmann scalar but infinite Ψ4\Psi_{4} ``truly naked black holes''. In the (ultra)extremal versions of these objects the structure of the Einstein tensor on the horizon changes due to extra terms as compared to the usual horizons, the null energy condition being violated at some portions of the horizon surface. The demand to rule out such divergencies leads to the constancy of the factor that governs the leading term in the asymptotics of the lapse function and in this sense represents a formal analog of the zeroth law of mechanics of non-extremal black holes. In doing so, all extra terms in the Einstein tensor automatically vanish.Comment: 21 pages, To appear in Class. Quant. Gra

    The Intrinsically X-ray Weak Quasar PHL 1811. II. Optical and UV Spectra and Analysis

    Full text link
    This is the second of two papers reporting observations and analysis of the unusually bright (m_b=14.4), luminous (M_B=-25.5), nearby (z=0.192) narrow-line quasar PHL 1811. The first paper reported that PHL 1811 is intrinsically X-ray weak, and presented a spectral energy distribution (SED). Here we present HST STIS optical and UV spectra, and ground-based optical spectra. The optical and UV line emission is very unusual. There is no evidence for forbidden or semiforbidden lines. The near-UV spectrum is dominated by very strong FeII and FeIII, and unusual low-ionization lines such as NaID and CaII H&K are observed. High-ionization lines are very weak; CIV has an equivalent width of 6.6A, a factor of ~5 smaller than measured from quasar composite spectra. An unusual feature near 1200A can be deblended in terms of Ly\alpha, NV, SiII, and CIII* using the blueshifted CIV profile as a template. Photoionization modeling shows that the unusual line emission can be explained qualitatively by the unusually soft SED. Principally, a low gas temperature results in inefficient emission of collisionally excited lines, including the semiforbidden lines generally used as density diagnostics. The emission resembles that of high-density gas; in both cases this is a consequence of inefficient cooling. PHL 1811 is very unusual, but we note that quasar surveys are generally biased against finding similar objects.Comment: Accepted for publication in ApJS. Full resolution figures available here: http://www.nhn.ou.edu/~leighly/phl1811_paper1.pd
    • …
    corecore