5,746 research outputs found
Willingness to pay for environmental attributes of non-food agricultural products: a real choice experiment
This paper investigates consumers’ willingness to pay (WTP) a price premium for two environmental attributes of a non-food agricultural product. We study individual preferences for roses associated with an eco-label and a carbon footprint using an economic experiment combining discrete choice questions and real economic incentives involving real purchases of roses against cash. The data are analyzed with a mixed logit model and reveal significant premiums for both environmental attributes of the product.WILLINGNESS TO PAY;ENVIRONMENTAL ATTRIBUTES;NON-FOOD PRODUCT;REAL CHOICE EXPERIMENT;MIXED LOGIT
Communication: Truncated non-bonded potentials can yield unphysical behavior in molecular dynamics simulations of interfaces
Non-bonded potentials are included in most force fields and therefore widely
used in classical molecular dynamics simulations of materials and interfacial
phenomena. It is commonplace to truncate these potentials for computational
efficiency based on the assumption that errors are negligible for reasonable
cutoffs or compensated for by adjusting other interaction parameters. Arising
from a metadynamics study of the wetting transition of water on a solid
substrate, we find that the influence of the cutoff is unexpectedly strong and
can change the character of the wetting transition from continuous to first
order by creating artificial metastable wetting states. Common cutoff
corrections such as the use of a force switching function, a shifted potential,
or a shifted force do not avoid this. Such a qualitative difference urges
caution and suggests that using truncated non-bonded potentials can induce
unphysical behavior that cannot be fully accounted for by adjusting other
interaction parameters
Constraining the solutions of an inverse method of stellar population synthesis
In three previous papers (Pelat 1997, 1998 and Moultaka & Pelat 2000), we set
out an inverse stellar population synthesis method which uses a database of
stellar spectra. Unlike other methods, this one provides a full knowledge of
all possible solutions as well as a good estimation of their stability;
moreover, it provides the unique approximate solution, when the problem is
overdetermined, using a rigorous minimization procedure. In Boisson et al.
(2000), this method has been applied to 10 active and 2 normal galaxies. In
this paper we analyse the results of the method after constraining the
solutions. Adding {\it a priori} physical conditions on the solutions
constitutes a good way to regularize the synthesis problem. As an illustration
we introduce physical constraints on the relative number of stars taking into
account our present knowledge of the initial mass function in galaxies. In
order to avoid biases on the solutions due to such constraints, we use
constraints involving only inequalities between the number of stars, after
dividing the H-R diagram into various groups of stellar masses. We discuss the
results for a well-known globular cluster of the galaxy M31 and discuss some of
the galaxies studied in Boisson et al. (2000). We find that, given the spectral
resolution and the spectral domain, the method is very stable according to such
constraints (i.e. the constrained solutions are almost the same as the
unconstrained one). However, an additional information can be derived about the
evolutionary stage of the last burst of star formation, but the precise age of
this particular burst seems to be questionable.Comment: Accepted in A&A. 15 pages, 5 figures and 6 table
Polarization--universal rejection filtering by ambichiral structures made of indefinite dielectric--magnetic materials
An ambichiral structure comprising sheets of an anisotropic dielectric
material rejects normally incident plane waves of one circular polarization
(CP) state but not of the other CP state, in its fundamental Bragg regime.
However, if the same structure is made of an dielectric--magnetic material with
indefinite permittivity and permeability dyadics, it may function as a
polarization--universal rejection filter because two of the four planewave
components of the electromagnetic field phasors in each sheet are of the
positive--phase--velocity type and two are of the negative--phase--velocity
type.Comment: Cleaned citations in the tex
Derivation of the Zakharov equations
This paper continues the study of the validity of the Zakharov model
describing Langmuir turbulence. We give an existence theorem for a class of
singular quasilinear equations. This theorem is valid for well-prepared initial
data. We apply this result to the Euler-Maxwell equations describing
laser-plasma interactions, to obtain, in a high-frequency limit, an asymptotic
estimate that describes solutions of the Euler-Maxwell equations in terms of
WKB approximate solutions which leading terms are solutions of the Zakharov
equations. Because of transparency properties of the Euler-Maxwell equations,
this study is led in a supercritical (highly nonlinear) regime. In such a
regime, resonances between plasma waves, electromagnetric waves and acoustic
waves could create instabilities in small time. The key of this work is the
control of these resonances. The proof involves the techniques of geometric
optics of Joly, M\'etivier and Rauch, recent results of Lannes on norms of
pseudodifferential operators, and a semiclassical, paradifferential calculus
Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics
Hydrodynamic behavior at the vicinity of a confining wall is closely related
to the friction properties of the liquid/solid interface. Here we consider,
using Molecular Dynamics simulations, the electric contribution to friction for
charged surfaces, and the induced modification of the hydrodynamic boundary
condition at the confining boundary. The consequences of liquid slippage for
electrokinetic phenomena, through the coupling between hydrodynamics and
electrostatics within the electric double layer, are explored. Strong
amplification of electro-osmotic effects is revealed, and the non-trivial
effect of surface charge is discussed. This work allows to reconsider existing
experimental data, concerning Zeta potentials of hydrophobic surfaces and
suggest the possibility to generate ``giant'' electro-osmotic and
electrophoretic effects, with direct applications in microfluidics
Predicted FeII Emission-Line Strengths from Active Galactic Nuclei
We present theoretical FeII emission line strengths for physical conditions
typical of Active Galactic Nuclei with Broad-Line Regions. The FeII line
strengths were computed with a precise treatment of radiative transfer using
extensive and accurate atomic data from the Iron Project. Excitation mechanisms
for the FeII emission included continuum fluorescence, collisional excitation,
self-fluorescence amoung the FeII transitions, and fluorescent excitation by
Lyman-alpha and Lyman-beta. A large FeII atomic model consisting of 827 fine
structure levels (including states to E ~ 15 eV) was used to predict fluxes for
approximately 23,000 FeII transitions, covering most of the UV, optical, and IR
wavelengths of astrophysical interest. Spectral synthesis for wavelengths from
1600 Angstroms to 1.2 microns is presented. Applications of present theoretical
templates to the analysis of observations are described. In particular, we
discuss recent observations of near-IR FeII lines in the 8500 Angstrom -- 1
micron region which are predicted by the Lyman-alpha fluorescence mechanism. We
also compare our UV spectral synthesis with an empirical iron template for the
prototypical, narrow-line Seyfert galaxy I Zw 1. The theoretical FeII template
presented in this work should also applicable to a variety of objects with FeII
spectra formed under similar excitation conditions, such as supernovae and
symbiotic stars.Comment: 33 pages, 15 postscript figure
Effective temperatures of a heated Brownian particle
We investigate various possible definitions of an effective temperature for a
particularly simple nonequilibrium stationary system, namely a heated Brownian
particle suspended in a fluid. The effective temperature based on the
fluctuation dissipation ratio depends on the time scale under consideration, so
that a simple Langevin description of the heated particle is impossible. The
short and long time limits of this effective temperature are shown to be
consistent with the temperatures estimated from the kinetic energy and Einstein
relation, respectively. The fluctuation theorem provides still another
definition of the temperature, which is shown to coincide with the short time
value of the fluctuation dissipation ratio
- …
