795 research outputs found
Spectral signatures of photosynthesis I: Review of Earth organisms
Why do plants reflect in the green and have a 'red edge' in the red, and
should extrasolar photosynthesis be the same? We provide: 1) a brief review of
how photosynthesis works; 2) an overview of the diversity of photosynthetic
organisms, their light harvesting systems, and environmental ranges; 3) a
synthesis of photosynthetic surface spectral signatures; 4) evolutionary
rationales for photosynthetic surface reflectance spectra with regard to
utilization of photon energy and the planetary light environment. Given the
surface incident photon flux density spectrum and resonance transfer in light
harvesting, we propose some rules with regard to where photosynthetic pigments
will peak in absorbance: a) the wavelength of peak incident photon flux; b) the
longest available wavelength for core antenna or reaction center pigments; and
c) the shortest wavelengths within an atmospheric window for accessory
pigments. That plants absorb less green light may not be an inefficient legacy
of evolutionary history, but may actually satisfy the above criteria.Comment: 69 pages, 7 figures, forthcoming in Astrobiology March 200
Majorana: from atomic and molecular, to nuclear physics
In the centennial of Ettore Majorana's birth (1906-1938?), we re-examine some
aspects of his fundamental scientific production in atomic and molecular
physics, including a not well known short communication. There, Majorana
critically discusses Fermi's solution of the celebrated Thomas-Fermi equation
for electron screening in atoms and positive ions. We argue that some of
Majorana's seminal contributions in molecular physics already prelude to the
idea of exchange interactions (or Heisenberg-Majorana forces) in his later
workson theoretical nuclear physics. In all his papers, he tended to emphasize
the symmetries at the basis of a physical problem, as well as the limitations,
rather than the advantages, of the approximations of the method employed.Comment: to appear in Found. Phy
He Structure and Mechanisms of He Backward Elastic Scattering
The mechanism of He backward elastic scattering is studied.
It is found that the triangle diagrams with the subprocesses He,
He and He, where and
denote the singlet deuteron and diproton pair in the state,
respectively, dominate in the cross section at 0.3-0.8 GeV, and their
contribution is comparable with that for a sequential transfer of a pair
at 1-1.5 GeV.
The contribution of the , estimated on the basis of the spectator
mechanism of the He reaction, increases the HeHe cross section by one order of magnitude as compared to the
contribution of the deuteron alone.
Effects of the initial and final states interaction are taken into account.Comment: 17 pages, Latex, 4 postscript figures, expanded version, accepted by
Physical Review
A SIGNATURE FOR ISOSCALAR-SPIN TRANSITIONS IN ([d,d) SCATTERING
Three different signatures for isoscalar spin transitions in nuclei have been tested in the 12C(d,d)12C reaction at 400 MeV. These signatures have values close to zero for the natural parity states, and ranging from 0.22 to 0.50 for the ΔS=1 ΔT=0, 12.7 MeV state
Arabidopsis CURVATURE THYLAKOID1 Proteins Modify Thylakoid Architecture by Inducing Membrane Curvature
Chloroplasts of land plants characteristically contain grana, cylindrical stacks of thylakoid membranes. A granum consists of a core of appressed membranes, two stroma-exposed end membranes, and margins, which connect pairs of grana membranes at their lumenal sides. Multiple forces contribute to grana stacking, but it is not known how the extreme curvature at margins is generated and maintained. We report the identification of the CURVATURE THYLAKOID1 (CURT1) protein family, conserved in plants and cyanobacteria. The four Arabidopsis thaliana CURT1 proteins (CURT1A, B, C, and D) oligomerize and are highly enriched at grana margins. Grana architecture is correlated with the CURT1 protein level, ranging from flat lobe-like thylakoids with considerably fewer grana margins in plants without CURT1 proteins to an increased number of membrane layers (and margins) in grana at the expense of grana diameter in overexpressors of CURT1A. The endogenous CURT1 protein in the cyanobacterium Synechocystis sp PCC6803 can be partially replaced by its Arabidopsis counterpart, indicating that the function of CURT1 proteins is evolutionary conserved. In vitro, Arabidopsis CURT1A proteins oligomerize and induce tubulation of liposomes, implying that CURT1 proteins suffice to induce membrane curvature. We therefore propose that CURT1 proteins modify thylakoid architecture by inducing membrane curvature at grana margins
Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions
The internally electrodynamic (IED) particle model was derived based on
overall experimental observations, with the IED process itself being built
directly on three experimental facts, a) electric charges present with all
material particles, b) an accelerated charge generates electromagnetic waves
according to Maxwell's equations and Planck energy equation and c) source
motion produces Doppler effect. A set of well-known basic particle equations
and properties become predictable based on first principles solutions for the
IED process; several key solutions achieved are outlined, including the de
Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass,
Einstein mass-energy relation, Newton's law of gravity, single particle self
interference, and electromagnetic radiation and absorption; these equations and
properties have long been broadly experimentally validated or demonstrated. A
specific solution also predicts the Doebner-Goldin equation which emerges to
represent a form of long-sought quantum wave equation including gravity. A
critical review of the key experiments is given which suggests that the IED
process underlies the basic particle equations and properties not just
sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200
- …