5 research outputs found

    Autoantibodies against ATP4A are a feature of the abundant autoimmunity that develops in first-degree relatives of patients with type 1 diabetes

    Get PDF
    Objective: Type 1 diabetes is associated with autoantibodies to different organs that include the gut. The objective of the study was to determine the risk of developing gastric parietal cell autoimmunity in relation to other autoimmunity in individuals with a family history of type 1 diabetes. Methods: Autoantibodies to the parietal cell autoantigen, H+/K+ ATPase subunit A (ATP4A) was measured in 2218 first-degree relatives of patients with type 1 diabetes, who were prospectively followed from birth for a median of 14.5 years. All were also tested regularly for the development of islet autoantibodies, transglutaminase autoantibodies, and thyroid peroxidase autoantibodies. Results: The cumulative risk to develop ATP4A autoantibodies was 8.1% (95% CI, 6.6–9.6) by age 20 years with a maximum incidence observed at age 2 years. Risk was increased in females (HR, 1.9; 95% CI, 1.3–2.8; p = 0.0004), relatives with the HLA DR4-DQ8/DR4-DQ8 genotype (HR, 3.4; 95% CI, 1.9–5.9; p < 0.0001) and in participants who also had thyroid peroxidase autoantibodies (HR, 3.7; 95% CI, 2.5– 5.5; p < 0.0001). Risk for at least one of ATP4A-, islet-, transglutaminase-, or thyroid peroxidase-autoantibodies was 24.7% (95% CI, 22.6–26.7) by age 20 years and was 47.3% (95% CI, 41.3–53.3) in relatives who had an HLA DR3/DR4-DQ8, DR4-DQ8/ DR4-DQ8, or DR3/DR3 genotype (p < 0.0001 vs. other genotypes). Conclusions: Relatives of patients with type 1 diabetes who have risk genotypes are at very high risk for the development of autoimmunity against gastric and other organs

    Novel minor HLA DR associated antigens in type 1 diabetes

    Get PDF
    Type 1 diabetes is an autoimmune disease leading to insulin deficiency. Autoantibodies to beta cell proteins are already present in the asymptomatic phase of type 1 diabetes. Recent findings have suggested a number of additional minor autoantigens in patients with type 1 diabetes. We have established luciferase immunoprecipitation systems (LIPS) for anti-MTIF3, anti-PPIL2, anti-NUP50 and anti-MLH1 and analyzed samples from 500 patients with type 1 diabetes at onset of clinical disease and 200 healthy individuals who had a family history of type 1 diabetes but no evidence of beta cell autoantibodies. We show significantly higher frequencies of anti-MTIF3, anti-PPIL2 and anti-MLH1 in recent onset type 1 diabetes patients in comparison to controls. In addition, antibodies to NUP50 were associated with HLA-DRB1*03 and antibodies to MLH1 were associated with HLA-DRB1*04 genotypes.:1. Introduction 2. Material and methods 2.1 Participants 2.2. Cloning and expression of antigens 2.3. Luciferase ImmunoPrecipitation (LIPS) assays 2.4. Antinuclear antibodies (ANA) 2.5. Statistics 3. Results 4. Discussion 5. Conclusion Declaration of interest Funding Acknowledgements Appendix A Suplementary data Reference

    Yield of a public health screening of children for islet autoantibodies in Bavaria, Germany

    No full text
    Importance: Public health screening for type 1 diabetes in its presymptomatic stages may reduce disease severity and burden on a population level. Objective: To determine the prevalence of presymptomatic type 1 diabetes in children participating in a public health screening program for islet autoantibodies and the risk for progression to clinical diabetes. Design, Setting, and Participants: Screening for islet autoantibodies was offered to children aged 1.75 to 5.99 years in Bavaria, Germany, between 2015 and 2019 by primary care pediatricians during well-baby visits. Families of children with multiple islet autoantibodies (presymptomatic type 1 diabetes) were invited to participate in a program of diabetes education, metabolic staging, assessment of psychological stress associated with diagnosis, and prospective follow-up for progression to clinical diabetes until July 31, 2019. Exposures: Measurement of islet autoantibodies. Main Outcomes and Measures: The primary outcome was presymptomatic type 1 diabetes, defined by 2 or more islet autoantibodies, with categorization into stages 1 (normoglycemia), 2 (dysglycemia), or 3 (clinical) type 1 diabetes. Secondary outcomes were the frequency of diabetic ketoacidosis and parental psychological stress, assessed by the Patient Health Questionnaire-9 (range, 0-27; higher scores indicate worse depression; ≤4 indicates no to minimal depression; &gt;20 indicates severe depression). Results: Of 90 632 children screened (median [interquartile range {IQR}] age, 3.1 [2.1-4.2] years; 48.5% girls), 280 (0.31%; 95% CI, 0.27-0.35) had presymptomatic type 1 diabetes, including 196 (0.22%) with stage 1, 17 (0.02%) with stage 2, 26 (0.03%) with stage 3, and 41 who were not staged. After a median (IQR) follow-up of 2.4 (1.0-3.2) years, another 36 children developed stage 3 type 1 diabetes. The 3-year cumulative risk for stage 3 type 1 diabetes in the 280 children with presymptomatic type 1 diabetes was 24.9% ([95% CI, 18.5%-30.7%]; 54 cases; annualized rate, 9.0%). Two children had diabetic ketoacidosis. Median (IQR) psychological stress scores were significantly increased at the time of metabolic staging in mothers of children with presymptomatic type 1 diabetes (3 [1-7]) compared with mothers of children without islet autoantibodies (2 [1-4]) (P = .002), but declined after 12 months of follow-up (2 [0-4]) (P &lt; .001). Conclusions and Relevance: Among children aged 2 to 5 years in Bavaria, Germany, a program of primary care-based screening showed an islet autoantibody prevalence of 0.31%. These findings may inform considerations of population-based screening of children for islet autoantibodies

    Identification of infants with increased type 1 diabetes genetic risk for enrollment into Primary Prevention Trials-GPPAD-02 study design and first results

    No full text
    Primary prevention of type 1 diabetes (T1D) requires intervention in genetically at-risk infants. The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) has established a screening program, GPPAD-02, that identifies infants with a genetic high risk of T1D, enrolls these into primary prevention trials, and follows the children for beta-cell autoantibodies and diabetes. Genetic testing is offered either at delivery, together with the regular newborn testing, or at a newborn health care visits before the age of 5 months in regions of Germany (Bavaria, Saxony, Lower Saxony), UK (Oxford), Poland (Warsaw), Belgium (Leuven), and Sweden (Region Skåne). Seven clinical centers will screen around 330 000 infants. Using a genetic score based on 46 T1D susceptibility single-nucleotide polymorphisms (SNPs) or three SNPS and a first-degree family history for T1D, infants with a high (>10%) genetic risk for developing multiple beta-cell autoantibodies by the age of 6 years are identified. Screening from October 2017 to December 2018 was performed in 50 669 infants. The prevalence of high genetic risk for T1D in these infants was 1.1%. Infants with high genetic risk for T1D are followed up and offered to participate in a randomized controlled trial aiming to prevent beta-cell autoimmunity and T1D by tolerance induction with oral insulin. The GPPAD-02 study provides a unique path to primary prevention of beta-cell autoimmunity in the general population. The eventual benefit to the community, if successful, will be a reduction in the number of children developing beta-cell autoimmunity and T1D.status: publishe
    corecore