32 research outputs found

    Mismatch Repair Genes Mlh1 and Mlh3 Modify CAG Instability in Huntington\u27s Disease Mice: Genome-Wide and Candidate Approaches

    Get PDF
    The Huntington\u27s disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington\u27s disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1 protein levels play an important role in driving of the efficiency of somatic expansions

    Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System

    Get PDF
    Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development

    Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington\u27s Disease Knock-In Mice.

    No full text
    Huntington\u27s disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability. Genetics 2017 Feb; 205(2):503-516

    Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice.

    Get PDF
    The CAG trinucleotide repeat mutation in the Huntington's disease gene (HTT) exhibits age-dependent tissue-specific expansion that correlates with disease onset in patients, implicating somatic expansion as a disease modifier and potential therapeutic target. Somatic HTT CAG expansion is critically dependent on proteins in the mismatch repair (MMR) pathway. To gain further insight into mechanisms of somatic expansion and the relationship of somatic expansion to the disease process in selectively vulnerable MSNs we have crossed HTT CAG knock-in mice (HdhQ111) with mice carrying a conditional (floxed) Msh2 allele and D9-Cre transgenic mice, in which Cre recombinase is expressed specifically in MSNs within the striatum. Deletion of Msh2 in MSNs eliminated Msh2 protein in those neurons. We demonstrate that MSN-specific deletion of Msh2 was sufficient to eliminate the vast majority of striatal HTT CAG expansions in HdhQ111 mice. Furthermore, MSN-specific deletion of Msh2 modified two mutant huntingtin phenotypes: the early nuclear localization of diffusely immunostaining mutant huntingtin was slowed; and the later development of intranuclear huntingtin inclusions was dramatically inhibited. Therefore, Msh2 acts within MSNs as a genetic enhancer both of somatic HTT CAG expansions and of HTT CAG-dependent phenotypes in mice. These data suggest that the selective vulnerability of MSNs may be at least in part contributed by the propensity for somatic expansion in these neurons, and imply that intervening in the expansion process is likely to have therapeutic benefit

    Alterations in tissue metabolite levels in response to CAG-expansion in <i>Htt</i> and increased dietary fat.

    No full text
    <p>A) Summary of the number of nominally significant metabolites per tissue (as a percentage of total measured metabolites) for each tissue—heat map color indicates the number of metabolites significant at p < 0.05. B) A relatively limited number of metabolites show concordant (green text) or discordant (red text) concentration changes in response to CAG-expansion in <i>Htt</i> in the striatum and cerebellum. The striatum and cerebellum also show the largest number (4) of overlapping diet-responsive metabolites amongst tissue pairs. C) Determination of genotype using metabolite concentrations using random forests—the error rate for each tissue is shown over 500 iterations. Below, the contribution of individual metabolites to model accuracy is shown for striatum and cerebellum, the two tissues with accurate models. The y-axis indicates the increase in errors in genotype prediction (in %) after permuting the genotype labels for the indicated metabolite. D) The concentrations of lipid species important for genotype prediction in the striatum are increased in the <i>Htt</i><sup><i>Q111/Q7</i></sup> samples (PC 32:2–49% increase, p = 0.024; CE 18:0–54% increase, p = 0.004; SM 24:0–33% increase, p = 0.02; 65% increase, p = 0.06).</p

    Metabolite profiles clearly discriminate tissue types.

    No full text
    <p>A—Linear discriminant analysis was conducted to derive linear combinations of metabolite concentrations that separate tissue types. In this approach, linear combinations of factors (here, metabolites) are constructed that maximally differentiate a factor of interest (here, tissue type). Scatter-plot matrix of the top 3 linear discriminants (linear combinations of variables) constructed reveals that they very effectively separate tissue types; the tissue type of each sample is indicated by text and color. To test the robustness of this finding, the tissue labels of each sample were randomly permuted, and the LDA analysis repeated. Increased scatter suggests that tissue-separation is much less accurate using permuted data, consistent with the hypothesis that inter-tissue variability is lower than intra-tissue variability in these samples. Linear discriminants derived from actual data are shown on the left, those derived from tissue-label permuted data are shown on the right. B—Sample concentrations of metabolites with clear tissue-specific roles; GABA is high in CNS tissues (striatum and cerebellum), and absent in peripheral tissues. The conjugated bile acid taurochenodeoxycholate are present in the liver, and to a smaller extent the plasma, but absent from other tissues.</p

    Striatal enrichment of the 10 most genotype-sensitive metabolites in the striatum of <i>Htt</i><sup><i>Q111/+</i></sup> mice.

    No full text
    <p>Top ranked metabolites by genotype ANOVA F-statistic are included in order of magnitude. The relative integrated peak height of each metabolite in the striatum compared to the liver and cerebellum is indicated by the rank of each metabolite on lists of 243 total metabolites.</p
    corecore