120 research outputs found

    Shared PKS Module in Biosynthesis of Synergistic Laxaphycins

    Get PDF
    Cyanobacteria produce a wide range of lipopeptides that exhibit potent membrane-disrupting activities. Laxaphycins consist of two families of structurally distinct macrocyclic lipopeptides that act in a synergistic manner to produce antifungal and antiproliferative activities. Laxaphycins are produced by range of cyanobacteria but their biosynthetic origins remain unclear. Here, we identified the biosynthetic pathways responsible for the biosynthesis of the laxaphycins produced by Scytonema hofmannii PCC 7110. We show that these laxaphycins, called scytocyclamides, are produced by this cyanobacterium and are encoded in a single biosynthetic gene cluster with shared polyketide synthase enzymes initiating two distinct non-ribosomal peptide synthetase pathways. The unusual mechanism of shared enzymes synthesizing two distinct types of products may aid future research in identifying and expressing natural product biosynthetic pathways and in expanding the known biosynthetic logic of this important family of natural products.Peer reviewe

    Identification and structural analysis of cereal arabinoxylan-derived oligosaccharides by negative ionization HILIC-MS/MS

    Get PDF
    Recent works provide evidence of the prebiotic potential of arabinoxylan-derived oligosaccharides (A)XOS. In this study, we developed a structural analysis for cereal-derived (A)XOS by negative ionization HILIC-MS/MS. Initially, we assessed twelve (A)XOS samples of known structures with different linkage positions and branching points by direct-infusion negative ESI-MSn. We subsequently developed the negative ion HILIC-MS/MS with a post-column addition of ammonium chloride. The selected (A)XOS represented both linear (arabinofuranosyl residue linked to the non-reducing end of xylooligosaccharide) and branched structures. Each (A)XOS sample produced a specific spectrum in negative ion ESI-MSn. By analyzing cross-ring fragment ions, we determined the linkage positions of linear (A)XOS. The presence or absence of diagnostic ions in the MS3 allowed us to detect different branches (O-2- or/and O-3-linked arabinofuranosyl with/or without O-4-linked xylopyranosyl at the non-reducing end). Furthermore, we could identify all analyzed samples by HILIC-MS/MS, based on the formed spectral library and chromatographic retention times.Peer reviewe

    Carotenoid Biosynthesis in Calothrix sp. 336/3: Composition of Carotenoids on Full Medium, During Diazotrophic Growth and After Long-Term H2 Photoproduction

    Get PDF
    The carotenoid composition of the filamentous heterocystous N2-fixing cyanobacterium Calothrix sp. 336/3 was investigated under three conditions: in full medium (non-diazotrophic growth); in the absence of combined nitrogen (diazotrophic growth); and after long-term H2 photoproduction (diazotrophic medium and absence of nitrogen in atmosphere). Anabaena sp. PCC 7120 and its DeltahupL mutant with disrupted uptake hydrogenase were used as reference strains. Analysis of identified carotenoids and enzymes involved in carotenogenesis showed the presence of three distinct biosynthetic pathways in Calothrix sp. 336/3. The first one is directed towards biosynthesis of myxoxanthophylls, such as myxol 2'-methylpentoside and 2-hydroxymyxol 2'-methylpentoside. The second pathway results in production of hydroxylated carotenoids, such as zeaxanthin, caloxanthin and nostoxanthin, and the last pathway is responsible for biosynthesis of echinenone and hydroxylated forms of ketocarotenoids, such as 3'-hydroxyechinenone and adonixanthin. We found that carotenogenesis in filamentous heterocystous cyanobacteria varies depending on the nitrogen status of the cultures, with significant accumulation of echinenone during diazotrophic growth at the expense of beta-carotene. Under the severe N-deficiency and high CO2 supply, which leads to efficient H2 photoproduction, cyanobacteria degrade echinenone and beta-carotene and accumulate glycosylated and hydroxylated carotenoids, such as myxol (or ketomyxol) 2'- methylpentosides, 3'-hydroxyechinenone and zeaxanthin. We suggest that the stability of the photosynthetic apparatus in Calothrix sp. 336/3 cells under N-deficiency and high carbon conditions, which is also appeared as the partial recovery of the pigment composition by the end of the long-term ( approximately 1 month) H2 photoproduction process, might be mediated by a high content of hydroxycarotenoids.</p

    Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of <it>mcyB (mcyB1) </it>and <it>mcyC </it>in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus <it>Microcystis</it>.</p> <p>Results</p> <p>Here we undertook a phylogenetic study to investigate the order and timing of recombination between the <it>mcyB1 </it>and <it>mcyC </it>genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the <it>mcyB1 </it>and <it>mcyC </it>adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between <it>mcyB1 </it>and <it>mcyC </it>in strains of the genera <it>Anabaena</it>, <it>Microcystis</it>, and <it>Hapalosiphon</it>. We also find clear evidence for independent adenylation domain conversion of <it>mcyB1 </it>by unrelated peptide synthetase modules in strains of the genera <it>Nostoc </it>and <it>Microcystis</it>. The recombination events replace only the adenylation domain in each case and the condensation domains of <it>mcyB1 </it>and <it>mcyC </it>are not transferred together with the adenylation domain. Our findings demonstrate that the <it>mcyB1 </it>and <it>mcyC </it>adenylation domains are recombination hotspots in the microcystin synthetase gene cluster.</p> <p>Conclusion</p> <p>Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains.</p

    The lipopeptide toxins anabaenolysin A and B target biological membranes in a cholesterol-dependent manner

    Get PDF
    AbstractThe two novel cyanobacterial cyclic lipopeptides, anabaenolysin (Abl) A and B permeabilised mammalian cells, leading to necrotic death. Abl A was a more potent haemolysin than other known biodetergents, including digitonin, and induced discocyte–echinocyte transformation in erythrocytes. The mitochondria of the dead cells appeared intact with regard to both ultrastructure and membrane potential. Also isolated rat liver mitochondria were resistant to Abl, judged by their ultrastructure and lack of cytochrome c release. The sparing of the mitochondria could be related to the low cholesterol content of their outer membrane. In fact, a supplement of cholesterol in liposomes sensitised them to Abl. In contrast, the prokaryote-directed cyclic lipopeptide surfactin lysed preferentially non-cholesterol-containing membranes. In silico comparison of the positions of relevant functional chemical structures revealed that Abl A matched poorly with surfactin in spite of the common cyclic lipopeptide structure. Abl A and the plant-derived glycolipid digitonin had, however, predicted overlaps of functional groups, particularly in the cholesterol-binding tail of digitonin. This may suggest independent evolution of Abl and digitonin to target eukaryotic cholesterol-containing membranes. Sub-lytic concentrations of Abl A or B allowed influx of propidium iodide into cells without interfering with their long-term cell viability. The transient permeability increase allowed the influx of enough of the cyanobacterial cyclic peptide toxin nodularin to induce apoptosis. The anabaenolysins might therefore not only act solely as lysins, but also as cofactors for the internalisation of other toxins. They represent a potent alternative to digitonin to selectively disrupt cholesterol-containing biological membranes

    Description of Aliinostoc alkaliphilum sp. nov. (Nostocales, Cyanobacteria), a New Bioactive Metabolite-Producing Strain from Salina Verde (Pantanal, Brazil) and Taxonomic Distribution of Bioactive Metabolites in Nostoc and Nostoc-like Genera

    Get PDF
    Cyanobacteria are a group of oxygenic photosynthetic prokaryotes found in almost all habitats on earth including those characterized as extreme environments. It has been observed that the number of studies dealing with the biodiversity of extremophilic cyanobacteria is limited while studies exploring their bioactive potential are even scarcer. The taxonomy of three Nostoc-like cyanobacterial strains isolated from a shallow lake in Brazil was studied by applying a polyphasic approach. The bioactive potential of the strains was also evaluated using antimicrobial susceptibility testing. The metabolites present in the bioactive HPLC fractions were identified by UPLC/ESI/Q-TOF. Based on our phylogenetic inferences in combination with morphological and ecological information, we describe Aliinostoc alkaliphilum sp. nov., exhibiting antibacterial and antifungal activities. The main bioactive metabolite in all three strains was nocuolin A, which represents the first report of this metabolite in Aliinostoc. Our phylogenetic studies also revealed that many bioactive metabolite-producting strains that are currently assigned to Nostoc belong to other distinct evolutionary lineages. These findings highlight the importance of polyphasic approach studies in both cyanobacterial taxonomy and natural product discovery programs

    Chemical diversity and cellular effects of antifungal cyclic lipopeptides from cyanobacteria

    Get PDF
    Cyanobacteria produce a variety of chemically diverse cyclic lipopeptides with potent antifungal activities. These cyclic lipopeptides have an amphipathic structure comprised of a polar peptide cycle and hydrophobic fatty acid side chain. Many have antibiotic activity against a range of human and plant fungal pathogens. This review article aims to summarize the present knowledge on the chemical diversity and cellular effects of cyanobacterial cyclic lipopeptides that display antifungal activity. Cyclic antifungal lipopeptides from cyanobacteria commonly fall into four structural classes; hassallidins, puwainaphycins, laxaphycins, and anabaenolysins. Many of these antifungal cyclic lipopeptides act through cholesterol and ergosterol-dependent disruption of membranes. In many cases, the cyclic lipopeptides also exert cytotoxicity in human cells, and a more extensive examination of their biological activity and structure-activity relationship is warranted. The hassallidin, puwainaphycin, laxaphycin, and anabaenolysin structural classes are unified through shared complex biosynthetic pathways that encode a variety of unusual lipoinitiation mechanisms and branched biosynthesis that promote their chemical diversity. However, the biosynthetic origins of some cyanobacterial cyclic lipopeptides and the mechanisms, which drive their structural diversification in general, remain poorly understood. The strong functional convergence of differently organized chemical structures suggests that the production of lipopeptide confers benefits for their producer. Whether these benefits originate from their antifungal activity or some other physiological function remains to be answered in the future. However, it is clear that cyanobacteria encode a wealth of new cyclic lipopeptides with novel biotechnological and therapeutic applications.Peer reviewe
    • …
    corecore