3,679 research outputs found
Near infrared spectroscopy for fibre based gas detection
Gas sensing systems based on fibre optic linked near infra red absorption cells are potentially a flexible and effective tool for monitoring accumulations of hazardous and noxious gases in enclosed areas such as tunnels and mines. Additionally the same baseline technology is readily modified to measure concentrations of hydrocarbon fuels - notably but not exclusively methane, and monitoring emissions of greenhouse gases. Furthermore the system can be readily implemented to provide intrinsically safe monitoring over extensive areas at up to ~250 points from a single interrogation unit. In this paper we review our work on fibre coupled gas sensing systems. We outline the basic principles through which repeatable and accurate self calibrating gas measurements may be realised, including the recover of detailed line shapes for non contact temperature and / or pressure measurements in addition to concentration assessments in harsh environments. We also outline our experience in using these systems in extensive networks operating under inhospitable conditions over extended periods extending to several years
Gas sensing based on optical fibre coupled diode laser spectroscopy : a new approach to sensor systems for safety monitoring
We describe an entirely passive fibre optic network which senses, amongst other species, CH¬4¬ and CO¬¬2 , with sensitivity and selectivity compatible with safety sensing in the mine environment. The basic principle is that a single laser diode source targeted to a particular species addresses up to 200 sensing points which may be spread over an area of dimensions ten or more km. The detection and processing electronics is typically located with the laser source. Several laser sources can be introduced in parallel to enable monitoring multiple species. The network itself, entirely linked through optical fibre, is inherently intrinsically safe. It is self checking for faults at the sensing location and continuously self calibrating. In the methane sensing mode its sensitivity is sub 100ppm and it responds accurately up to 100% methane. It is therefore capable of detecting extremely hazardous gas pockets which are completely missed by other sensor technologies. The network has demonstrated stability with zero maintenance or recalibration over periods in excess of two years. We believe that this system offers unique benefits in the context of mine safety and ventilation system monitoring
Concordant cues in faces and voices: testing the backup signal hypothesis
Information from faces and voices combines to provide multimodal signals about a person. Faces and voices may offer redundant, overlapping (backup signals), or complementary information (multiple messages). This article reports two experiments which investigated the extent to which faces and voices deliver concordant information about dimensions of fitness and quality. In Experiment 1, participants rated faces and voices on scales for masculinity/femininity, age, health, height, and weight. The results showed that people make similar judgments from faces and voices, with particularly strong correlations for masculinity/femininity, health, and height. If, as these results suggest, faces and voices constitute backup signals for various dimensions, it is hypothetically possible that people would be able to accurately match novel faces and voices for identity. However, previous investigations into novel face–voice matching offer contradictory results. In Experiment 2, participants saw a face and heard a voice and were required to decide whether the face and voice belonged to the same person. Matching accuracy was significantly above chance level, suggesting that judgments made independently from faces and voices are sufficiently similar that people can match the two. Both sets of results were analyzed using multilevel modeling and are interpreted as being consistent with the backup signal hypothesis
Large Area Mapping at 850 Microns. V. Analysis of the Clump Distribution in the Orion A South Molecular Cloud
We present results from a 2300 arcmin^2 survey of the Orion A molecular cloud
at 450 and 850 micron using the Submillimetre Common-User Bolometer Array
(SCUBA) on the James Clerk Maxwell Telescope. The region mapped lies directly
south of the OMC1 cloud core and includes OMC4, OMC5, HH1/2, HH34, and L1641N.
We identify 71 independent clumps in the 850 micron map and compute size, flux,
and degree of central concentration in each. Comparison with isothermal,
pressure-confined, self-gravitating Bonnor-Ebert spheres implies that the
clumps have internal temperatures T_d ~ 22 +/- K and surface pressures log
(k^-1 P cm^-3 K) = 6.0 +/- 0.2. The clump masses span the range 0.3 - 22 Msun
assuming a dust temperature T_d ~ 20 K and a dust emissivity kappa_850 = 0.02
cm^2 g^-1. The distribution of clump masses is well characterized by a
power-law N(M) propto M^-alpha with alpha = 2.0 +/- 0.5 for M > 3.0 Msun,
indicating a clump mass function steeper than the stellar Initial Mass
Function. Significant incompleteness makes determination of the slope at lower
masses difficult. A comparison of the submillimeter emission map with an H_2
2.122 micron survey of the same region is performed. Several new Class 0
sources are revealed and a correlation is found between both the column density
and degree of concentration of the submillimeter sources and the likelihood of
coincident H_2 shock emission.Comment: 44 pages, 17 figures, accepted by Ap
A Deep Look at the Emission-Line Nebula in Abell 2597
The close correlation between cooling flows and emission-line nebulae in
clusters of galaxies has been recognized for over a decade and a half, but the
physical reason for this connection remains unclear. Here we present deep
optical spectra of the nebula in Abell 2597, one of the nearest strong
cooling-flow clusters. These spectra reveal the density, temperature, and metal
abundances of the line-emitting gas. The abundances are roughly half-solar, and
dust produces an extinction of at least a magnitude in V. The absence of [O
III] 4363 emission rules out shocks as a major ionizing mechanism, and the
weakness of He II 4686 rules out a hard ionizing source, such as an active
galactic nucleus or cooling intracluster gas. Hot stars are therefore the best
candidate for producing the ionization. However, even the hottest O stars
cannot power a nebula as hot as the one we see. Some other nonionizing source
of heat appears to contribute a comparable amount of power. We show that the
energy flux from a confining medium can become important when the ionization
level of a nebula drops to the low levels seen in cooling-flow nebulae. We
suggest that this kind of phenomenon, in which energy fluxes from the
surrounding medium augment photoelectric heating, might be the common feature
underlying the diverse group of objects classified as LINERS.Comment: 33 Latex pages, including 16 Postscript figures, to appear in 1997
September 1 Astrophysical Journa
Chandra imaging of the X-ray core of Abell 1795
We report the discovery of a 40 arcsec long X-ray filament in the core of the
cluster of galaxies A1795. The feature coincides with an Halpha+NII filament
found by Cowie et al in the early 1980s and resolved into at least 2 U-band
filaments by McNamara et al in the mid 1990s. The (emission-weighted)
temperature of the X-ray emitting gas along the filament is 2.5-3 keV, as
revealed by X-ray colour ratios. The deprojected temperature will be less. A
detailed temperature map of the core of the cluster presented. The cD galaxy at
the head of the filament is probably moving through or oscillating in the
cluster core. The radiative cooling time of the X-ray emitting gas in the
filament is about 3x10^8 yr which is similar to the age of the filament
obtained from its length and velocity. This suggests that the filament is
produced by cooling of the gas from the intracluster medium. The filament, much
of which is well separated from the body of the cD galaxy and its radio source,
is potentially of great importance in helping to understand the energy and
ionization source of the optical nebulosity common in cooling flows.Comment: 5 pages, 5 figures, accepted by MNRAS, high resolution version
available at http://www-xray.ast.cam.ac.uk/papers/a1795_chandra.pd
New times, new politics: history and memory during the final years of the CPGB
This article examines the relationship between collective memory, historical interpretation and political identity. It focuses on the dissolution of the Communist Party of Great Britain (CPGB) as constructed through collective narrative memory, and on Marxist interpretations of history. The divisions within the party and the wider Marxist community, stretching from 1956 until 1991, were often framed around questions of historical interpretation. The events of 1989–1991 created an historical and mnemonic crisis for CPGB members who struggled to reconcile their past identities with their present situation. Unlike the outward-facing revisionism of other political parties, this was an intensely personal affair. The solution for many was to emphasise the need to find new ways to progress socialist aims, without relying on a discredited grand narrative. In contrast, other Communist parties, such as the Communist Party of Britain, which had been established (or ‘re-established’) in 1988, fared rather better. By adhering to the international party line of renewal and continued struggle, the party was able to hold its narrative together, condemning the excesses of totalitarian regimes, while reaffirming the need for international class struggle
Acute toxicity in comprehensive head and neck radiation for nasopharynx and paranasal sinus cancers: cohort comparison of 3D conformal proton therapy and intensity modulated radiation therapy.
Background: To evaluate acute toxicity endpoints in a cohort of patients receiving head and neck radiation with proton therapy or intensity modulated radiation therapy (IMRT). Methods: Forty patients received comprehensive head and neck radiation including bilateral cervical nodal radiation, given with or without chemotherapy, for tumors of the nasopharynx, nasal cavity or paranasal sinuses, any T stage, N0-2. Fourteen received comprehensive treatment with proton therapy, and 26 were treated with IMRT, either comprehensively or matched to proton therapy delivered to the primary tumor site. Toxicity endpoints assessed included g-tube dependence at the completion of radiation and at 3 months after radiation, opioid pain medication requirement compared to pretreatment normalized as equivalent morphine dose (EMD) at completion of treatment, and at 1 and 3 months after radiation. Results: In a multivariable model including confounding variables of concurrent chemotherapy and involved nodal disease, comprehensive head and neck radiation therapy using proton therapy was associated with a lower opioid pain requirement at the completion of radiation and a lower rate of gastrostomy tube dependence by the completion of radiation therapy and at 3 months after radiation compared to IMRT. Proton therapy was associated with statistically significant lower mean doses to the oral cavity, esophagus, larynx, and parotid glands. In subgroup analysis of 32 patients receiving concurrent chemotherapy, there was a statistically significant correlation with a greater opioid pain medication requirement at the completion of radiation and both increasing mean dose to the oral cavity and to the esophagus. Conclusions: Proton therapy was associated with significantly reduced radiation dose to assessed non-target normal tissues and a reduced rate of gastrostomy tube dependence and opioid pain medication requirements. This warrants further evaluation in larger studies, ideally with patient-reported toxicity outcomes and quality of life endpoints
Bond energy/eond order relationships for N-O linkages and a quantitative measure of ionicity: the rôle of nitro groups in hydrogen bonding
The nitro group is active in metabolic systems and can be found as an integral part of a number of useful curative drugs and many toxic substances. The basis for much of this activity is not fully understood. It is not necessarily caused directly by through-bond electronic effects but may also be due to direct H-bonding to nitro or to indirect interference by the nitro group with existing H-bonding. An unusual effect of a nitro substituent on kinetic results from urethane addition/elimination reactions (Scheme 1) has been ascribed to some form of self-association, which was neither specified nor quantified. To investigate self-association phenomena caused by a nitro group, a bond energy/bond order formula for N–O bonds has been developed and then used to interpret relative amounts of covalent and ionic contributions to total N–O bond energy. Calculated bond energies were then used to obtain enthalpies of formation for H-bonds to nitro groups in crystals and in solution. Similar results from solution data reveal that direct H-bonding to nitro is much weaker than in crystals, unless intramolecular H-bonding can occur. The results revealed that the 'self-association' effects observed for nitro substituents in urethanes (Scheme 1) were not caused by nitro participating directly in intermolecular bonding to NH of another urethane but by an indirect intramolecular action of the nitro group on pre-existing normal NH–O amide/amide type H-bonding
- …