7,918 research outputs found

    On the Fast Magnetic Rotator Regime of Stellar Winds

    Full text link
    Aims: We study the acceleration of the stellar winds of rapidly rotating low mass stars and the transition between the slow magnetic rotator and fast magnetic rotator regimes. We aim to understand the properties of stellar winds in the fast magnetic rotator regime and the effects of magneto-centrifugal forces on wind speeds and mass loss rates. Methods: We extend the solar wind model of Johnstone et al. (2015b) to 1D magnetohydrodynamic (MHD) simulations of the winds of rotating stars. We test two assumptions for how to scale the wind temperature to other stars and assume the mass loss rate scales as Mdot ~ Rstar^2 OmegaStar^1.33 Mstar^-3.36, in the unsaturated regime, as estimated by Johnstone et al. (2015a). Results: For 1.0 Msun stars, the winds can be accelerated to several thousand km/s, and the effects of magneto-centrifugal forces are much weaker for lower mass stars. We find that the different assumptions for how to scale the wind temperature to other stars lead to significantly different mass loss rates for the rapid rotators. If we assume a constant temperature, the mass loss rates of solar mass stars do not saturate at rapid rotation, which we show to be inconsistent with observed rotational evolution. If we assume the wind temperatures scale positively with rotation, the mass loss rates are only influenced significantly at rotation rates above 75 OmegaSun. We suggest that models with increasing wind speed for more rapid rotators are preferable to those that assume a constant wind speed. If this conclusion is confirmed by more sophisticated wind modelling. it might provide an interesting observational constraint on the properties of stellar winds.Comment: Accepted for publication in A&A. All data and codes from the paper can be downloaded from https://goo.gl/hTuEV

    Rebuilding health care in Iraq

    Get PDF
    The effects of three wars within 25 years, a decade of international sanctions, and a brutal regime have had tragic consequences on Iraq’s health system and on the health of the Iraqi people. While the scale of these problems is becoming clearer, it has been difficult in the current security situation to know how best to respond to requests for help. A workshop organised by the International Committee of the Faculty of Public Health (FPH) in November 2003 has now addressed this very issue. This paper describes the health service needs presented at the workshop by representatives from the Department for International Development (DFID), World Health Organisation (WHO), International Non-Governmental Organisations (INGOs) and, most importantly, Iraq’s Ministry of Health. We will also consider current responses and how professional public health bodies from around the world might contribute to the development of Iraq’s health sector

    The Coronal Temperatures of Low-Mass Main-Sequence Stars

    Full text link
    Aims. We study the X-ray emission of low-mass main-sequence stars to derive a reliable general scaling law between coronal temperature and the level of X-ray activity. Methods. We collect ROSAT measurements of hardness ratios and X-ray luminosities for a large sample of stars to derive which stellar X-ray emission parameter is most closely correlated with coronal temperature. We calculate average coronal temperatures for a sample of 24 low-mass main-sequence stars with measured emission measure distributions (EMDs) collected from the literature. These EMDs are based on high-resolution X-ray spectra measured by XMM-Newton and Chandra. Results. We confirm that there is one universal scaling relation between coronal average temperature and surface X-ray flux, Fx, that applies to all low-mass main-sequence stars. We find that coronal temperature is related to Fx by Tcor=0.11 Fx^0.26, where Tcor is in MK and Fx is in erg/s/cm^2.Comment: 5 pages, 3 figures, 1 table; accepted for publication in A&

    The cuticle

    Get PDF
    The nematode cuticle is an extremely flexible and resilient exoskeleton that permits locomotion via attachment to muscle, confers environmental protection and allows growth by molting. It is synthesised five times, once in the embryo and subsequently at the end of each larval stage prior to molting. It is a highly structured extra-cellular matrix (ECM), composed predominantly of cross-linked collagens, additional insoluble proteins termed cuticlins, associated glycoproteins and lipids. The cuticle collagens are encoded by a large gene family that are subject to strict patterns of temporal regulation. Cuticle collagen biosynthesis involves numerous co- and post-translational modification, processing, secretion and cross-linking steps that in turn are catalysed by specific enzymes and chaperones. Mutations in individual collagen genes and their biosynthetic pathway components can result in a range of defects from abnormal morphology (dumpy and blister) to embryonic and larval death, confirming an essential role for this structure and highlighting its potential as an ECM experimental model system

    Stellar Winds on the Main-Sequence II: the Evolution of Rotation and Winds

    Full text link
    Aims: We study the evolution of stellar rotation and wind properties for low-mass main-sequence stars. Our aim is to use rotational evolution models to constrain the mass loss rates in stellar winds and to predict how their properties evolve with time on the main-sequence. Methods: We construct a rotational evolution model that is driven by observed rotational distributions of young stellar clusters. Fitting the free parameters in our model allows us to predict how wind mass loss rate depends on stellar mass, radius, and rotation. We couple the results to the wind model developed in Paper I of this series to predict how wind properties evolve on the main-sequence. Results: We estimate that wind mass loss rate scales with stellar parameters as M˙R2Ω1.33M3.36\dot{M}_\star \propto R_\star^2 \Omega_\star^{1.33} M_\star^{-3.36}. We estimate that at young ages, the solar wind likely had a mass loss rate that is an order of magnitude higher than that of the current solar wind. This leads to the wind having a higher density at younger ages; however, the magnitude of this change depends strongly on how we scale wind temperature. Due to the spread in rotation rates, young stars show a large range of wind properties at a given age. This spread in wind properties disappears as the stars age. Conclusions: There is a large uncertainty in our knowledge of the evolution of stellar winds on the main-sequence, due both to our lack of knowledge of stellar winds and the large spread in rotation rates at young ages. Given the sensitivity of planetary atmospheres to stellar wind and radiation conditions, these uncertainties can be significant for our understanding of the evolution of planetary environments.Comment: 26 pages, 14 figures, 2 tables, to be published in A&

    The Extreme Ultraviolet and X-Ray Sun in Time: High-Energy Evolutionary Tracks of a Solar-Like Star

    Full text link
    Aims. We aim to describe the pre-main sequence and main-sequence evolution of X-ray and extreme-ultaviolet radiation of a solar mass star based on its rotational evolution starting with a realistic range of initial rotation rates. Methods. We derive evolutionary tracks of X-ray radiation based on a rotational evolution model for solar mass stars and the rotation-activity relation. We compare these tracks to X-ray luminosity distributions of stars in clusters with different ages. Results. We find agreement between the evolutionary tracks derived from rotation and the X-ray luminosity distributions from observations. Depending on the initial rotation rate, a star might remain at the X-ray saturation level for very different time periods, approximately from 10 Myr to 300 Myr for slow and fast rotators, respectively. Conclusions. Rotational evolution with a spread of initial conditions leads to a particularly wide distribution of possible X-ray luminosities in the age range of 20 to 500 Myrs, before rotational convergence and therefore X-ray luminosity convergence sets in. This age range is crucial for the evolution of young planetary atmospheres and may thus lead to very different planetary evolution histories.Comment: 4 pages, 4 figures, accepted for publication in A&

    The Gelfand spectrum of a noncommutative C*-algebra: a topos-theoretic approach

    Get PDF
    We compare two influential ways of defining a generalized notion of space. The first, inspired by Gelfand duality, states that the category of 'noncommutative spaces' is the opposite of the category of C*-algebras. The second, loosely generalizing Stone duality, maintains that the category of 'pointfree spaces' is the opposite of the category of frames (i.e., complete lattices in which the meet distributes over arbitrary joins). One possible relationship between these two notions of space was unearthed by Banaschewski and Mulvey, who proved a constructive version of Gelfand duality in which the Gelfand spectrum of a commutative C*-algebra comes out as a pointfree space. Being constructive, this result applies in arbitrary toposes (with natural numbers objects, so that internal C*-algebras can be defined). Earlier work by the first three authors, shows how a noncommutative C*-algebra gives rise to a commutative one internal to a certain sheaf topos. The latter, then, has a constructive Gelfand spectrum, also internal to the topos in question. After a brief review of this work, we compute the so-called external description of this internal spectrum, which in principle is a fibered pointfree space in the familiar topos Sets of sets and functions. However, we obtain the external spectrum as a fibered topological space in the usual sense. This leads to an explicit Gelfand transform, as well as to a topological reinterpretation of the Kochen-Specker Theorem of quantum mechanics, which supplements the remarkable topos-theoretic version of this theorem due to Butterfield and Isham.Comment: 12 page
    corecore