29,089 research outputs found

    XMM-Newton observations of PSr B1259-63 near the 2004 periastron passage

    Full text link
    PSR B1259-63 is in a highly eccentric 3.4 year orbit with a Be star and crosses the Be star disc twice per orbit, just prior to and just after periastron. Unpulsed radio, X-ray and gamma-ray emission observed from the binary system is thought to be due to the collision of pulsar wind with the wind of Be star. We present here the results of new XMM-Newton observations of the PSR B1259-63 system during the beginning of 2004 as the pulsar approached the disc of Be star.We combine these results with earlier unpublished X-ray data from BeppoSAX and XMM-Newton as well as with ASCA data. The detailed X-ray lightcurve of the system shows that the pulsar passes (twice per orbit) through a well-defined gaussian-profile disk with the half-opening angle (projected on the pulsar orbit plane) ~18.5 deg. The intersection of the disk middle plane with the pulsar orbital plane is inclined at ~70 deg to the major axis of the pulsar orbit. Comparing the X-ray lightcurve to the TeV lightcurve of the system we find that the increase of the TeV flux some 10--100 days after the periastron passage is unambiguously related to the disk passage. At the moment of entrance to the disk the X-ray photon index hardens from 1.8 up to 1.2 before returning to the steeper value 1.5. Such behaviour is not easily accounted for by the model in which the X-ray emission is synchrotron emission from the shocked pulsar wind. We argue that the observed hardening of the X-ray spectrum is due to the inverse Compton or bremsstrahlung emission from 10-100 MeV electrons responsible for the radio synchrotron emission.Comment: 9 pages, accepted to MNRA

    Shock absorbing support and restraint means Patent

    Get PDF
    Shock absorbing couch for body support under high acceleration or deceleration force

    The atmospheric effects of stratospheric aircraft: A topical review

    Get PDF
    In the late 1960s the aircraft industry became interested in developing a fleet of supersonic transports (SSTs). Between 1972 and 1975, the Climatic Impact Assessment Program (CIAP) studied the possible environmental impact of SSTs. For environmental and economic reasons, the fleet of SSTs was not developed. The Upper Atmosphere Research Program (UARP) has recently undertaken the responsibility of directing scientific research needed to assess the atmospheric impact of supersonic transports. The UARP and the High-Speed Research Program asked Harold Johnston to review the current understanding of aircraft emissions and their effect on the stratosphere. Johnston and his colleagues have recently re-examined the SST problem using current models for stratospheric ozone chemistry. A unique view is given here of the current scientific issues and the lessons learned since the beginning of CIAP, and it links the current research program with the assessment process that began two years ago

    Modification of electronic surface states by graphene islands on Cu(111)

    Get PDF
    We present a study of graphene/substrate interactions on UHV-grown graphene islands with minimal surface contamination using \emph{in situ} low-temperature scanning tunneling microscopy (STM). We compare the physical and electronic structure of the sample surface with atomic spatial resolution on graphene islands versus regions of bare Cu(111) substrate. We find that the Rydberg-like series of image potential states is shifted toward lower energy over the graphene islands relative to Cu(111), indicating a decrease in the local work function, and the resonances have a much smaller linewidth, indicating reduced coupling to the bulk. In addition, we show the dispersion of the occupied Cu(111) Shockley surface state is influenced by the graphene layer, and both the band edge and effective mass are shifted relative to bare Cu(111).Comment: 12 pages, 3 figure

    Electronic structure and magnetic properties of Li_2ZrCuO_4 - a spin 1/2 Heisenberg system in vicinity to a quantum critical point

    Full text link
    Based on density functional calculations, we present a detailed theoretical study of the electronic structure and the magnetic properties of the quasi-one dimensional chain cuprate Li_2ZrCuO_4 (Li_2CuZrO_4). For the relevant ratio of the next-nearest neighbor exchange J_2 to the nearest neighbor exchange J_1 we find alpha = -J_2/J_1 = 0.22\pm0.02 which is very close to the critical point at 1/4. Owing this vicinity to a ferromagnetic-helical critical point, we study in detail the influence of structural peculiarities such as the reported Li disorder and the non-planar chain geometry on the magnetic interactions combining the results of LDA based tight-binding models with LDA+U derived exchange parameters. Our investigation is complemented by an exact diagonalization study of a multi-band Hubbard model for finite clusters predicting a strong temperature dependence of the optical conductivity for Li_2ZrCuO_4

    SCREENING FOR DOWNS-SYNDROME

    Get PDF

    High-Energy Gamma-Ray Observations of Two Young, Energetic Radio Pulsars

    Get PDF
    We present results of Compton Gamma-Ray Observatory EGRET observations of the unidentified high-energy gamma-ray sources 2EG J1049-5847 (GEV J1047-5840, 3EG J1048-5840) and 2EG J1103-6106 (3EG J1102-6103). These sources are spatially coincident with the young, energetic radio pulsars PSRs B1046-58 and J1105-6107, respectively. We find evidence for an association between PSR B1046-58 and 2EG J1049-5847. The gamma-ray pulse profile, obtained by folding time-tagged photons having energies above 400 MeV using contemporaneous radio ephemerides, has probability of arising by chance of 1.2E-4 according to the binning-independent H-test. A spatial analysis of the on-pulse photons reveals a point source of equivalent significance 10.2 sigma. Off-pulse, the significance drops to 5.8 sigma. Archival ASCA data show that the only hard X-ray point source in the 95% confidence error box of the gamma-ray source is spatially coincident with the pulsar within the 1' uncertainty (Pivovaroff, Kaspi & Gotthelf 1999). The double peaked gamma-ray pulse morphology and leading radio pulse are similar to those seen for other gamma-ray pulsars and are well-explained in models in which the gamma-ray emission is produced in charge-depleted gaps in the outer magnetosphere. The inferred pulsed gamma-ray flux above 400 MeV, (2.5 +/- 0.6) x 10E-10 erg/cm^2/s, represents 0.011 +/- 0.003 of the pulsar's spin-down luminosity, for a distance of 3 kpc and 1 sr beaming. For PSR J1105-6107, light curves obtained by folding EGRET photons using contemporaneous radio ephemerides show no significant features. We conclude that this pulsar converts less than 0.014 of its spin-down luminosity into E > 100 MeV gamma-rays beaming in our direction (99% confidence), assuming a distance of 7 kpc, 1 sr beaming and a duty cycle of 0.5.Comment: Accepted for publication in the Astrophysical Journa

    Evidence for alignment of the rotation and velocity vectors in pulsars. II. Further data and emission heights

    Full text link
    We have conducted observations of 22 pulsars at frequencies of 0.7, 1.4 and 3.1 GHz and present their polarization profiles. The observations were carried out for two main purposes. First we compare the orientation of the spin and velocity vectors to verify the proposed alignment of these vectors by Johnston et al. (2005). We find, for the 14 pulsars for which we were able to determine both vectors, that 7 are plausibly aligned, a fraction which is lower than, but consistent with, earlier measurements. Secondly, we use profiles obtained simultaneously at widely spaced frequencies to compute the radio emission heights. We find, similar to other workers in the field, that radiation from the centre of the profile originates from lower in the magnetosphere than the radiation from the outer parts of the profile.Comment: Accepted by MNRAS. 14 page
    corecore