23 research outputs found

    Differences in the bovine milk whey proteome between early pregnancy and the estrous cycle

    Get PDF
    peer-reviewedCurrent bovine pregnancy detection methods are not reliable until at least day 28 post artificial insemination (AI). The bovine estrous cycle is approximately 21 days; consequently, producers miss an opportunity to rebreed at the next estrous event. Therefore, commercial interest exists for the discovery of novel biomarkers of pregnancy which could reliably detect pregnancy status at or before day 21 of pregnancy. The objective of the present study was to use liquid chromatography tandem mass spectrometry (LC-MS/MS) to perform a global, label-free, proteomics study on (i) milk whey and (ii) extracellular vesicle (EV) enriched milk whey samples, from day 21 of pregnancy, compared with day 21 of the estrous cycle, in order to identify potential protein biomarkers of early pregnancy. The estrous cycles of 10 dairy cows were synchronized, they went through one (control) estrous cycle and these cows were artificially inseminated during the following estrus. These cows were confirmed pregnant by ultrasound scanning. Milk whey samples were collected on day 21 of the estrous cycle and on day 21 post AI. Milk whey samples and EV enriched milk whey samples were analyzed by LC-MS/MS and subsequent analyzes of the label-free quantitative data was performed in MaxQuant and Perseus. Four proteins (APOB, SPADH1, PLIN2 and LPO) were differentially expressed between the proteomes of milk whey from day 21 of pregnancy and day 21 of the estrous cycle (P < 0.05). Ten proteins (PIGR, PGD, QSOX1, MUC1, SRPRA, MD2, GAPDH, FOLR1, GPRC5B and HHIPL2) were differentially expressed between the proteomes of EV enriched milk whey from day 21 of pregnancy and day 21 of the estrous cycle (P < 0.05). These proteins are potential milk whey biomarkers of early pregnancy

    Electronic feeding behavioural data as indicators of health status in dairy calves

    Get PDF
    peer-reviewedThe objectives of this study were (i) to characterise clinical health in dairy calves on an Irish research farm during the artificial calf-rearing period and (ii) to determine whether calves’ pre-weaning intakes and feeding behaviour, recorded by electronic calf feeders, changes in response to incidents of bovine respiratory disease (BRD). Holstein-Friesian (H-F) and Jersey (J) calves were fed by automatic milk replacer (MR) and concentrate feeders. Feeding behaviour, including MR consumption, drinking speed, number of rewarded and unrewarded visits to the feeder as well as concentrate consumption, was recorded by the feeders. A modified version of the Wisconsin calf health scoring criteria chart was used to score calves’ clinical measurements and identify incidences of BRD. Thus, 40% of calves were found to have at least one incident of BRD. Feeding behaviour was altered during incidents of BRD. The number of unrewarded visits to the feeder was reduced, by approximately four visits, for calves with BRD during the 3 d prior to the identification of BRD (P < 0.05) and tended to be reduced during the 7 d following the identification of BRD (P = 0.05), compared with healthy calves. Additionally, calves with BRD had a tendency for reduced net energy intake (approximately 8%) during the 3 d prior to the identification of BRD, compared with healthy calves. Therefore, calf feeding behavioural data, recorded by electronic feeders during the pre-weaning period, can indicate cases of BRD

    Characterisation of the Whole Blood mRNA Transcriptome in Holstein-Friesian and Jersey Calves in Response to Gradual Weaning

    Get PDF
    peer-reviewedWeaning of dairy calves is an early life husbandry management practice which involves the changeover from a liquid to a solid feed based diet. The objectives of the study were to use RNA-seq technology to examine the effect of (i) breed and (ii) gradual weaning, on the whole blood mRNA transcriptome of artificially reared Holstein-Friesian and Jersey calves. The calves were gradually weaned over 14 days (day (d) -13 to d 0) and mRNA transcription was examined one day before gradual weaning was initiated (d -14), one day after weaning (d 1), and 8 days after weaning (d 8). On d -14, 550 genes were differentially expressed between Holstein-Friesian and Jersey calves, while there were 490 differentially expressed genes (DEG) identified on d 1, and 411 DEG detected eight days after weaning (P 0.05). The pathways, gene ontology terms, and biological functions consistently over-represented among the DEG between Holstein-Friesian and Jersey were associated with the immune response and immune cell signalling, specifically chemotaxis. Decreased transcription of several cytokines, chemokines, immunoglobulin-like genes, phagocytosis-promoting receptors and g-protein coupled receptors suggests decreased monocyte, natural killer cell, and T lymphocyte, chemotaxis and activation in Jersey compared to Holstein-Friesian calves. Knowledge of breed-specific immune responses could facilitate health management practices better tailored towards specific disease sensitivities of Holstein-Friesian and Jersey calves. Gradual weaning did not compromise the welfare of artificially-reared dairy calves, evidenced by the lack of alterations in the expression of any genes in response to gradual weaning.This research was made possible by funding, provided by the Department of Agriculture and Food Stimulus Fund 11/S/16 and EU PLF (RMIS 6311) project 311825. DJ was in receipt of a Teagasc Walsh Fellowship funded scholarship (WF2013216)

    Genome wide association study of passive immunity and disease traits in beef-suckler and dairy calves on Irish farms

    Get PDF
    peer reviewedCalves with lower concentrations of immunoglobulin G (IgG) in their blood, have a greater risk of developing diseases. There is a lack of knowledge on genetic markers known to be associated with immunological variability or disease resistance. Therefore, the objective of this study was to identify SNP markers associated with passive immunity measures (serum IgG, serum protein, albumin, globulin and total protein concentrations, total solids Brix percentage, zinc sulphate turbidity units) and disease (pneumonia, diarrhoea, crude illness) traits in Irish commercial beef-suckler and dairy calves through genome wide association studies (GWAS). Genotyping was performed on DNA samples from beef-suckler (n = 698) and dairy (n = 1178) calves, using the IDBv3 chip. Heritability of passive immunity associated traits (range 0.02–0.22) and the disease traits (range 0.03–0.20) were low-to-moderate. Twenty-five and fifteen SNPs approached genome wide significance (P < 5 × 10−5) for the passive immunity and the disease traits, respectively. One SNP “ARS-BFGL-BAC-27914” reached Bonferroni genome wide significance (P < 1.15 × 10−6) for an association with serum IgG concentration in beef calves. Further work will evaluate these SNPs in larger cattle populations and assess their contribution to genomic selection breeding strategies, aimed towards producing more disease resistant livestock.Department of Agriculture, Food and the Marine, Irelan

    Electrochemical assay of sorbitol dehydrogenase at PEDOT modified electrodes – a new milk biomarker for confirmation of pregnancy in dairy cattle

    Get PDF
    A robust electrochemical assay for sorbitol dehydrogenase (SORDH) activity in milk was developed using voltammetry and chronocoulometry at bare and polymer modified transducers. The motivation for the work was to evaluate the potential of SORDH as an early biomarker of bovine pregnancy using milk as sample matrix. SORDH is an enzyme involved in carbohydrate metabolism converting sorbitol, the sugar alcohol form of glucose, into fructose, with NAD+ as a cofactor being simultaneously reduced to NADH. The assay was optimised via direct NADH oxidation on glassy carbon and screen printed carbon electrodes followed by electropolymerisation of 3,4-ethylenedioxythiophene (EDOT) monomer to form an NADH responsive PEDOT surface which operated well in undiluted milk samples. Assay conditions such as incubation time and temperature were optimised resulting in a 3 min assay at 37 °C in the presence of 10 mM NAD+ and 20 mM sorbitol co-substrates, enabling NADH electro oxidation (linear range 0.25–5 mM, sensitivity 9.17 μC cm−2 mM−1 in undiluted milk). SORDH determination followed over the range 0.31–10 U mL−1 in milk samples with sensitivity 5.45 μC cm−2 U−1 mL with LOD 0.0787 U mL−1. The assay was applied to milk sample testing acquired as part of an approved animal study involving control and breeding cycles of dairy cows with focus on analysis at day 19 post artificial insemination. Significant differences between control and pregnant SORDH levels in whole milk animal samples were found (average values 2.57 and 4.07 ng mL−1 respectively), as verified using a commercial SORDH ELISA optical assay. Finally, progesterone monitoring over days 16–21 of the oestrous cycle employed an optical ELISA assay and confirmed maintenance of progesterone levels from day 19 onwards

    Risk factors associated with exposure to bovine respiratory disease pathogens during the peri-weaning period in dairy bull calves

    Get PDF
    peer-reviewedBackground Bovine respiratory disease (BRD) remains among the leading causes of death of cattle internationally. The objective of this study was to identify risk factors associated with exposure to BRD pathogens during the peri-weaning period (day (d)-14 to d 14 relative to weaning at 0) in dairy bull calves using serological responses to these pathogens as surrogate markers of exposure. Clinically normal Holstein-Friesian and Jersey breed bull calves (n = 72) were group housed in 4 pens using a factorial design with calves of different breeds and planes of nutrition in each pen. Intrinsic, management and clinical data were collected during the pre-weaning (d − 56 to d − 14) period. Calves were gradually weaned over 14 days (d − 14 to d 0). Serological analysis for antibodies against key BRD pathogens (BRSV, BPI3V, BHV-1, BHV-4, BCoV, BVDV and H. somni) was undertaken at d − 14 and d 14. Linear regression models (for BVDV, BPI3V, BHV-1, BHV-4, BCoV and H. somni) and a single mixed effect random variable model (for BRSV) were used to identify risk factors for changes in antibody levels to these pathogens. Results BRSV was the only pathogen which demonstrated clustering by pen. Jersey calves experienced significantly lower changes in BVDV S/P than Holstein-Friesian calves. Animals with a high maximum respiratory score (≥8) recorded significant increases in H. somni S/P during the peri-weaning period when compared to those with respiratory scores of ≤3. Haptoglobin levels of between 1.32 and 1.60 mg/ml at d − 14 were significantly associated with decreases in BHV-1 S/N during the peri-weaning period. Higher BVDV S/P ratios at d − 14 were significantly correlated with increased changes in serological responses to BHV-4 over the peri-weaning period. Conclusions Haptoglobin may have potential as a predictor of exposure to BHV-1. BRSV would appear to play a more significant role at the ‘group’ rather than ‘individual animal’ level. The significant associations between the pre-weaning levels of antibodies to certain BRD pathogens and changes in the levels of antibodies to the various pathogens during the peri-weaning period may reflect a cohort of possibly genetically linked ‘better responders’ among the study population

    Automatic cough detection for bovine respiratory disease in a calf house

    Get PDF
    peer-reviewedIn calf rearing, bovine respiratory disease (BRD) is a major animal health challenge. Farmers incur severe economic losses due to BRD. Additional to economic costs, outbreaks of BRD impair the welfare of the animal and extra expertise and labour are needed to treat and care for the infected animals. Coughing is recognised as a clinical manifestation of BRD. Therefore, the monitoring of coughing in a calf house has the potential to detect cases of respiratory infection before they become too severe, and thus to limit the impact of BRD on both the farmer and the animal. The objective of this study was to develop an algorithm for detection of coughing sounds in a calf house. Sounds were recorded in four adjacent compartments of one calf house over two time periods (82 and 96 days). There were approximately 21 and 14 calves in each compartment over the two time-periods, respectively. The algorithm was developed using 445 min of sound data. These data contained 664 different cough references, which were labelled by a human expert. It was found that, during the first time period in all 3 of the compartments and during the second period in 2 out of 4 compartments, the algorithm worked very well (precision higher than 80%), while in the 2 other cases the algorithm worked well but the precision was less (66.6% and 53.8%). A relation between the number of calves diagnosed with BRD and the detected coughs is shown

    Elucidation of the Host Bronchial Lymph Node miRNA Transcriptome Response to Bovine Respiratory Syncytial Virus

    Get PDF
    Publication history: Accepted - 19 March 2021; Published - 22 April 2021.Bovine respiratory disease (BRD) causes substantial morbidity and mortality, affecting cattle of all ages. One of the main causes of BRD is an initial inflammatory response to bovine respiratory syncytial virus (BRSV). MicroRNAs are novel and emerging noncoding small RNAs that regulate many biological processes and are implicated in various inflammatory diseases. The objective of the present study was to elucidate the changes in the bovine bronchial lymph node miRNA transcriptome in response to BRSV following an experimental viral challenge. Holstein-Friesian calves were either administered a challenge dose of BRSV (103:5 TCID50/ml 15 ml) (n = 12) or were mock inoculated with sterile phosphate buffered saline (n = 6). Daily scoring of clinical signs was performed and calves were euthanized at day 7 post-challenge. Bronchial lymph nodes were collected for subsequent RNA extraction and sequencing (75 bp). Read counts for known miRNAs were generated using the miRDeep2 package using the UMD3.1 reference genome and the bovine mature miRNA sequences from the miRBase database (release 22). EdgeR was used for differential expression analysis and Targetscan was used to identify target genes for the differentially expressed (DE) miRNAs. Target genes were examined for enriched pathways and gene ontologies using Ingenuity Pathway Analysis (Qiagen). Multi-dimensional scaling (MDS) based on miRNA gene expression changes, revealed a clearly defined separation between the BRSV challenged and control calves, although the clinical manifestation of disease was only mild. One hundred and nineteen DE miRNAs (P 1.5) were detected between the BRSV challenged and control calves. The DE miRNAs were predicted to target 465 genes which were previously found to be DE in bronchial lymph node tissue, between these BRSV challenged and control calves. Of the DE predicted target genes, 455 had fold changes that were inverse to the corresponding DE miRNAs. There were eight enriched pathways among the DE predicted target genes with inverse fold changes to their corresponding DE miRNA including: granulocyte and agranulocyte adhesion and diapedesis, interferon signalling and role of pathogen recognition receptors in recognition of bacteria and viruses. Functions predicted to be increased included: T cell response, apoptosis of leukocytes, immune response of cells and stimulation of cells. Pathogen recognition and proliferation of cytotoxic T cells are vital for the recognition of the virus and its subsequent elimination.This project was funded by the Irish Department of Agriculture and the Department of Agriculture, Environment and Rural Affairs, Northern Ireland, as part of the United States-Ireland R&D partnership call (RMIS_0033 Project 16/RD/US-ROI/11). JT and JK were supported by grant number 2017-67015-26760 from the United States Department for Agriculture National Institute for Food and Agriculture

    Experimental challenge with bovine respiratory syncytial virus in dairy calves: bronchial lymph node transcriptome response

    Get PDF
    Publication history: Accepted - 19 September 2019; Published online - 14 October 2019.Bovine Respiratory Disease (BRD) is the leading cause of mortality in calves. The objective of this study was to examine the response of the host’s bronchial lymph node transcriptome to Bovine Respiratory Syncytial Virus (BRSV) in a controlled viral challenge. Holstein-Friesian calves were either inoculated with virus (103.5 TCI D50/ml × 15 ml) (n = 12) or mock challenged with phosphate buffered saline (n = 6). Clinical signs were scored daily and blood was collected for haematology counts, until euthanasia at day 7 post-challenge. RNA was extracted and sequenced (75 bp paired-end) from bronchial lymph nodes. Sequence reads were aligned to the UMD3.1 bovine reference genome and differential gene expression analysis was performed using EdgeR. There was a clear separation between BRSV challenged and control calves based on gene expression changes, despite an observed mild clinical manifestation of the disease. Therefore, measuring host gene expression levels may be beneficial for the diagnosis of subclinical BRD. There were 934 differentially expressed genes (DEG) (p < 0.05, FDR <0.1, fold change >2) between the BRSV challenged and control calves. Over-represented gene ontology terms, pathways and molecular functions, among the DEG, were associated with immune responses. The top enriched pathways included interferon signaling, granzyme B signaling and pathogen pattern recognition receptors, which are responsible for the cytotoxic responses necessary to eliminate the virus.This project was funded by the Irish Department of Agriculture and the Department of Agriculture, Environment and Rural Affairs, Northern Ireland, as part of the US-Ireland R&D partnership call (RMIS_0033 Project 16/ RD/US-ROI/11). JFT and JWK were supported by Grant Number 2017-67015-26760 from the United States Department for Agriculture National Institute for Food and Agriculture
    corecore