8,768 research outputs found

    Household occupancy and burglary: A case study using COVID-19 restrictions

    Get PDF
    INTRODUCTION: In response to COVID-19, governments imposed various restrictions on movement and activities. According to the routine activity perspective, these should alter where crime occurs. For burglary, greater household occupancy should increase guardianship against residential burglaries, particularly during the day considering factors such as working from home. Conversely, there should be less eyes on the street to protect against non-residential burglaries. METHODS: In this paper, we test these expectations using a spatio-temporal model with crime and Google Community Mobility data. RESULTS: As expected, burglary declined during the pandemic and restrictions. Different types of burglary were, however, affected differently but largely consistent with theoretical expectation. Residential and attempted residential burglaries both decreased significantly. This was particularly the case during the day for completed residential burglaries. Moreover, while changes were coincident with the timing and relaxation of restrictions, they were better explained by fluctuations in household occupancy. However, while there were significant decreases in non-residential and attempted non-residential burglary, these did not appear to be related to changes to activity patterns, but rather the lockdown phase. CONCLUSIONS: From a theoretical perspective, the results generally provide further support for routine activity perspective. From a practical perspective, they suggest considerations for anticipating future burglary trends

    Predictive Crime Mapping: Arbitrary Grids or Street Networks?

    Get PDF
    OBJECTIVES: Decades of empirical research demonstrate that crime is concentrated at a range of spatial scales, including street segments. Further, the degree of clustering at particular geographic units remains noticeably stable and consistent; a finding that Weisburd (Criminology 53:133–157, 2015) has recently termed the ‘law of crime concentration at places’. Such findings suggest that the future locations of crime should—to some extent at least—be predictable. To date, methods of forecasting where crime is most likely to next occur have focused either on area-level or grid-based predictions. No studies of which we are aware have developed and tested the accuracy of methods for predicting the future risk of crime at the street segment level. This is surprising given that it is at this level of place that many crimes are committed and policing resources are deployed. METHODS: Using data for property crimes for a large UK metropolitan police force area, we introduce and calibrate a network-based version of prospective crime mapping [e.g. Bowers et al. (Br J Criminol 44:641–658, 2004)], and compare its performance against grid-based alternatives. We also examine how measures of predictive accuracy can be translated to the network context, and show how differences in performance between the two cases can be quantified and tested. RESULTS: Findings demonstrate that the calibrated network-based model substantially outperforms a grid-based alternative in terms of predictive accuracy, with, for example, approximately 20 % more crime identified at a coverage level of 5 %. The improvement in accuracy is highly statistically significant at all coverage levels tested (from 1 to 10 %). CONCLUSIONS: This study suggests that, for property crime at least, network-based methods of crime forecasting are likely to outperform grid-based alternatives, and hence should be used in operational policing. More sophisticated variations of the model tested are possible and should be developed and tested in future research

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    Get PDF
    Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (\u3c 10 y). In contrast, long-term (\u3e= 10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously

    Melanosomes or microbes: Testing an alternative hypothesis for the origin of microbodies in fossil feathers

    Get PDF
    Microbodies associated with fossil feathers, originally attributed to microbial biofilm, have been reinterpreted as melanosomes: pigment-containing, eukaryotic organelles. This interpretation generated hypotheses regarding coloration in non-avian and avian dinosaurs. Because melanosomes and microbes overlap in size, distribution and morphology, we re-evaluate both hypotheses. We compare melanosomes within feathers of extant chickens with patterns induced by microbial overgrowth on the same feathers, using scanning (SEM), field emission (FESEM) and transmission (TEM) electron microscopy. Melanosomes are always internal, embedded in a morphologically distinct keratinous matrix. Conversely, microbes grow across the surface of feathers in continuous layers, more consistent with published images from fossil feathers. We compare our results to both published literature and new data from a fossil feather ascribed to Gansus yumenensis (ANSP 23403). 'Mouldic impressions' were observed in association with both the feather and sediment grains, supporting a microbial origin. We propose criteria for distinguishing between these two microbodies
    • …
    corecore