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Abstract
Objectives Decades of empirical research demonstrate that crime is concentrated at a

range of spatial scales, including street segments. Further, the degree of clustering at

particular geographic units remains noticeably stable and consistent; a finding that

Weisburd (Criminology 53:133–157, 2015) has recently termed the ‘law of crime con-

centration at places’. Such findings suggest that the future locations of crime should—to

some extent at least—be predictable. To date, methods of forecasting where crime is most

likely to next occur have focused either on area-level or grid-based predictions. No studies

of which we are aware have developed and tested the accuracy of methods for predicting

the future risk of crime at the street segment level. This is surprising given that it is at this

level of place that many crimes are committed and policing resources are deployed.

Methods Using data for property crimes for a large UK metropolitan police force area, we

introduce and calibrate a network-based version of prospective crime mapping [e.g.

Bowers et al. (Br J Criminol 44:641–658, 2004)], and compare its performance against

grid-based alternatives. We also examine how measures of predictive accuracy can be

translated to the network context, and show how differences in performance between the

two cases can be quantified and tested.

Results Findings demonstrate that the calibrated network-based model substantially out-

performs a grid-based alternative in terms of predictive accuracy, with, for example,

approximately 20 % more crime identified at a coverage level of 5 %. The improvement in

accuracy is highly statistically significant at all coverage levels tested (from 1 to 10 %).

Conclusions This study suggests that, for property crime at least, network-based methods

of crime forecasting are likely to outperform grid-based alternatives, and hence should be
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used in operational policing. More sophisticated variations of the model tested are possible

and should be developed and tested in future research.

Keywords Crime prediction � Street network � Burglary � Crime mapping

Introduction

Decades of empirical research demonstrate that crime is concentrated at a range of spatial

scales, from neighbourhoods, to census blocks, to street segments, to street corners to

individual addresses. In characterising typical patterns, Clarke and Eck (2005) invoke the

80:20 rule (also known as the Pareto principle), which states that 80 % of a problem (here

crime) is accounted for by approximately 20 % of potential targets (here places). Examples

from the crime and place literature that are consistent with (or more extreme than) this

include Sherman et al.’s (1989) finding that in Minneapolis (USA) 50 % of calls for

service originated from 3.3 % of the cities addresses or intersections, Budd’s (2001)

finding that 1 % of UK households experienced 42 % of residential burglaries, and

Bowers’ (2014) finding that 80 % of thefts in bars in London (UK) occurred in 20 % of

facilities. Similar findings have been observed at the street segment level: Braga et al.

(2011) show that 50 % of street robberies in Boston (USA) occurred on 1 % of segments,

while Andresen and Malleson (2011) report that 50 % of vehicle thefts occur on 5 % of

segments in Vancouver (Canada). These examples demonstrate that crime is consistently

found to be highly concentrated across a range of cities and crime types, with this being

observed to be the case at various spatial scales.

Formalising this principle, Weisburd (2015) has recently proposed the law of crime

concentration at places, which states that ‘‘for a defined measure of crime at a specific

microgeographic unit, the concentration of crime will fall within a narrow bandwidth of

percentages for a defined cumulative proportion of crime’’. This is supported by a multiple-

city analysis, in which it is shown that between 0.4 and 1.6 % of street segments accounted

for 25 % of criminal incidents in data for a number of cities in the US and Israel. Fur-

thermore, this finding is found to remain stable over time, despite significant volatility in

absolute levels of crime. This apparent universality has significant implications for ana-

lytical approaches which seek to leverage the clustering of crime.

That crime is concentrated, and that the extent of this tends to be stable, has informed

criminological theory and, equally importantly, crime prevention practice. Areas in which

crime is concentrated represent natural targets for crime prevention effort, since it is in

those locations that the greatest impact is likely to be had. A growing number of studies

have demonstrated that focusing limited crime reduction resources at high-risk locations

reduces crime, while not appearing to displace offending activity elsewhere (Bowers et al.

2011; Braga et al. 2014).

At the individual address level, the Kirkholt burglary prevention project provides a

powerful example of this (Forrester et al. 1988). A key component of that project focused

on preventing the repeated victimisation of vulnerable homes through improvements to the

physical security of recently-victimised households. Following intervention, burglary

reduced by more than 50 % across the treatment area, and there was no evidence of spatial

displacement to nearby locations. A recent systematic review suggests that such strategies
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are generally effective at reducing residential and commercial burglary, but not sexual

assault (see Grove et al. 2012).

Adjusting the spatial scale slightly, hotspots policing strategies involve the deployment

of police resources to high-risk places (e.g. homes, stores, street corners, or subway sta-

tions) or hotspot locations comprising a geographical area of up to a few city blocks.

Interventions at such locations may include increased police patrols, problem oriented

policing (Goldstein 1990), or offender-based strategies. Braga et al.’s (2014) systematic

review of hotspots policing suggests that these too are effective at reducing crime, and that

crime is generally not displaced to nearby areas as a result of such action.

Geographically focused crime reduction strategies thus appear to be effective. Even at

those locations that are generally the most risky, however, crime will not occur all the time,

meaning that permanently deploying resources (particularly police officers) to them may

be inefficient. Similarly, the dynamic nature of crime patterns—and the phenomenon of

space-time clustering in particular—undermines static resource allocation strategies. This

is a particular concern given that crime reduction resources are limited. Consequently, a

natural evolution in the criminology of place research literature concerns the development,

comparison and validation of analytic methods that can be used to best predict the future

form and location of crime problems. A number of different methods and, indeed, software

tools have emerged which aim to fulfil this requirement. In this paper, we focus on one of

these—the prospective mapping technique proposed by Bowers et al. (2004)—and intro-

duce a novel network variant of this approach.

In what follows, we briefly review theories of environmental criminology that relate to

the spatial concentration of crime. We then consider research that suggests that crime

clusters not only in space, but in space and time, and how this informs methods of crime

forecasting. We then discuss spatial units of analysis, and consider in particular why street

segments—and not the grid cells currently used in predictive mapping systems—represent

a particularly meaningful unit of account. Finally, we introduce and test a network-based

prediction method, and compare its accuracy to a grid-based alternative.

Spatial Crime Concentration

Routine activity theory (RAT; Cohen and Felson 1979) considers crime occurrence

through the lens of human ecology, and suggests that direct contact predatory crimes occur

as a result of human interaction that emerges as a consequence of everyday activity.

People’s routine activities largely dictate what they do at particular times of the day and, in

turn, where they will be. Considering the population of a city, the everyday activities of

individuals lead to the concentration of people at some places at certain times of the day,

and the absence of people at others. At some times and locations people will be stationary,

while at others they will be passing through. According to the theory, crime occurs when a

motivated offender encounters a victim or target they are capable of victimising, in the

absence of a capable guardian who might prevent an offence from taking place. Hence, all

else equal, burglaries are to be expected when burglars are at locations when occupancy is

low (for example), and robberies are to be expected when robbers are at locations that

supply sufficient targets but few (or no) capable guardians. It is people’s routine activity

patterns that shape the likelihood of such convergences.

Offenders, victims and capable guardians are, of course, all subject to constraints. In

their simplest definition, routines shape when particular activities are typically completed,

but not necessarily where. Complementing RAT, crime pattern theory (Brantingham and

Brantingham 1993) considers how human mobility patterns and people’s engagement in
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legitimate (routine) activities lead to the development of activity spaces. Familiarity

develops within, near to and along the pathways that connect important or regularly-visited

locations in the everyday routines of citizens. In the case of offenders, familiarity brings

awareness of criminal opportunities, and, while offenders might commit offences any-

where, they cannot offend in locations of which they are not aware. Moreover, prior

awareness reduces uncertainty regarding the likely rewards and risks associated with

offending, which, according to the rational choice perspective (Clarke and Cornish 1985),

offenders seek to maximise and minimise respectively when making event-level offending

decisions. Consequently, the theory predicts that offenders will typically commit offences

within or near to those locations with which they are most familiar. With respect to crime

pattern formation, geographical hotspots of crime are anticipated to emerge where offender

awareness spaces overlap and suitable opportunities for crime are in sufficient supply.

Empirical evidence—too vast to review here, but including ethnographic studies (e.g.

Bennett and Wright 1984; Wiles and Costello 2000), the analysis of calls for service (e.g.

Sherman et al. 1989), and the analysis of crimes detected by the police (e.g. Townsley and

Sidebottom 2010)—provides clear support for crime pattern theory.

Space-Time Clustering

While decades of research demonstrate that crime clusters spatially, evidence also suggests

that there is a dynamic character to crime patterns. For instance, consider repeat burglary

victimisation of the same home. Evidence (e.g. Osborn and Tseloni 1998) suggests that

while some homes may avoid victimisation, others will be victimised many times. It is also

apparent that the timing of offences is not random. Instead, repeat offences typically occur

swiftly (e.g. Polvi et al. 1991), with the time between offences being too short to suggest

that sequential offences at the same location can be explained by the fact that some homes

represent more suitable opportunities than others (Johnson 2008). Indeed, such findings

suggest a mechanism of event dependency (Pease 1998), whereby the risk of victimisation

changes after an offence occurs, if only temporarily. The most parsimonious explanation

for such dependency is that, after completing a burglary, offenders return to those locations

that they perceive to offer rewards that outweigh the associated risks. Compared with

homes that have not been targeted previously, returning to such homes may be particularly

appealing, in the short-term at least, since more will be known and hence uncertainty

minimised for these homes (see Farrell et al. 1995). Doing so is also consistent with

optimal foraging strategies (e.g. Johnson 2014), since offenders will reduce the time spent

searching for crime opportunities. Over time, however, things may change: victims of

crime, residents in a neighbourhood, or the police (for example) may react, making crime

more risky, less rewarding or more difficult to commit. Moreover, an offender’s memory

will fade, increasing uncertainty about previously-victimised homes. Thus, returning to

burgled homes perceived to be suitable targets swiftly represents a rational foraging

strategy.

Empirical evidence from offender interviews (Ashton et al. 1998), the analysis of

crimes detected by the police (Everson and Pease 2001), and simulation experiments (e.g.

Johnson 2008; Short et al. 2008; Pitcher and Johnson 2011) provide clear support for this

explanation. In addition, research (e.g. Bernasco 2008; Johnson et al. 2009b; Summers

et al. 2010; Bernasco et al. 2015) demonstrates that, as well as returning to already-

victimised homes, burglars often target (again swiftly) the neighbours of burgled homes

and those nearby for similar reasons (e.g. Johnson and Bowers 2004). Such events have

been termed near repeats (Morgan 2001) and, in terms of crime pattern formation,
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empirical evidence conducted using techniques initially developed in the field of epi-

demiology (e.g. Townsley et al. 2003; Johnson and Bowers 2004; Johnson et al. 2007a)

suggests that such targeting behaviour leads not just to spatial clusters of crime, but to

space-time clusters of crime. Simply put, crime moves. However, this is not to say that

crime hotspots are temporary, but that within an area—be it a high crime area or not—there

is an evident regularity to precisely where and when crimes take place. In all studies that

have so far examined such patterns (for an international comparison, see Johnson et al.

2007a; and for a review, see Johnson and Bowers 2014), it appears to be the case that when

a crime occurs at one location, others are temporarily more likely nearby.

Prospective Mapping

Traditional methods of crime mapping, such as kernel density estimation (KDE), are used

to generate risk surfaces that indicate where crime has previously clustered. As such, they

consider the location of crime events but ignore their timing. Inspired by the above

findings, Bowers et al. (2004) proposed a method of predictive crime mapping, named

ProMap, that models the way in which crime clusters (or appears to spread) in space and

time. To do this, the expected risk at a location for a particular period (usually the next day,

few days or the next week) is estimated as a function of the density of crime that has

occurred at or near to that location. However, events are also inversely weighted according

to when they occurred, so that more recent crimes receive a greater weighting. The sim-

plest form of the function sums the product of inverse time and distance weights given to

each crime in the data set for the locations of interest (e.g. a series of grid cells).

In a series of studies (Bowers et al. 2004; Johnson et al. 2007b, 2009a) that have

examined residential burglary, prospective mapping (‘ProMap’) has been shown to offer a

modest but reliable predictive gain relative to KDE maps, particularly where the ProMap

models used have incorporated data on housing density and the location of major roads. In

an attempt to establish the usefulness of this technique in practice, a field trial of ProMap

was undertaken in collaboration with the East Midlands Police (UK) and the findings

disseminated via a Home Office research report (Johnson et al. 2007b). The application

developed as part of that research identified and displayed high-risk grid squares (100 m by

100 m) against a backdrop of the street network to clearly delineate the areas of suggested

intervention. Consultation with police practitioners suggested that they thought the maps

were useful in an operational context. However, as is true with so many crime reduction

interventions (Knutsson and Clarke 2006), problems were experienced with implementa-

tion on the ground. Due to organisational changes, resources were not devoted to using the

maps in practice as much as had been anticipated prior to the study, so unfortunately it was

difficult to evaluate the potential of the system in terms of real-world crime reduction.

Subsequent to the East Midlands trial, approaches based on the ProMap approach have

been implemented in other areas of the UK. In Greater Manchester (UK), for example,

Fielding and Jones (2012) developed their own system which followed the same principles

as those described above. Over an initial 12-month implementation interval, intervention

included increased guardianship provided by police patrols and other emergency service

staff, and burglary was found to decline by 27 % in the treatment area. This occurred in the

context of a force-wide increase of 7 %, and a reduction in burglary of 10 % in the next

most similar area. Other trials have been implemented and a common feature of them is

that the unit of analysis—in terms of the mapped regions of risk—is grid-based, often with

the areas of risk displayed being 50 m by 50 m or larger.
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Other Predictive Approaches

A closely related approach was proposed by Mohler et al. (2011), who used a self-exciting

point process (SEPP) model to generate predictions of future crime risk. The distinction

between the two methods (ProMap and SEPP) is essentially technical, since both methods

are motivated by the literature on repeat and near repeat victimisation discussed above.

SEPP models, typically used to model disease contagion or earthquake aftershocks,

however, model both how the risk of an event diffuses in space and time, and how enduring

characteristics of a location might influence the likelihood of future events. Another

advance in Mohler et al.’s study was the use of maximum likelihood methods to estimate

model parameters. Relative to the simplest ProMap model described above, this SEPP

model was found to offer superior predictive accuracy. Mohler et al. 2011’s method has

subsequently been developed commercially (as PredPol) and is used in a number of

policing departments in the USA and UK. Like the systems described above, it identifies

grid cells that are expected to be at the greatest risk in the near future, which can be plotted

against the backdrop of an area map.

Risk terrain modelling (RTM) takes a different approach to the prediction of risk,

focusing not on the crime distribution itself, but on the estimation of how conducive

locations are to crime (Kennedy et al. 2011). Hence, key aspects of the environment that

are considered criminogenic—such as bars, schools and bus stops—are layered together in

a geographical information system. To produce an overall risk surface, individual features

are weighted and an additive model used to combine the risks associated with each layer.

Again, risk maps are presented by the demarcation of areas of risk using a grid of uni-

formly sized cells. As well as focusing on environmental factors to generate predictions, a

further distinction of this method is that the forecast horizon for which predictions are

made (e.g. the next 6 months) is typically much longer than for either ProMap or PredPol,

for which predictions are for much shorter intervals, such as the next day.

Our discussion of predictive methods is necessarily brief and serves only to motivate

what follows. Other approaches exist, and the interested reader is referred to the work of

Gorr and Olligschlaeger (2002), who use time series approaches to generate area-level

predictions; Olligschlaeger (1997), who uses artificial neural networks; Rey et al. (2012),

who use a conditional spatial Markov chain technique; and Cheng and Adepeju (2013),

who examine the accuracy of SatScan at predicting future crime locations. These methods

each have a slightly different focus and predict crime at different spatial scales, but all do

so for area boundaries or grid cells. Readers might also consult review articles such as

those produced by Groff and La Vigne (2002) and Bowers and Johnson (2014).

Moving to a Street Network-Based Method

Research on predictive crime mapping has thus increased in the last decade, but it is

evident that the overwhelming majority of efforts have involved the generation of pre-

dictions using areal units such as two-dimensional grid cells or administrative regions.

While these have shown promising results, however, a number of issues suggest that

alternative spatial units—and the street network in particular—may be more meaningful

for analysis of this type.

The utility of studying crime at the street level is illustrated by an increasing body of

research (see Weisburd et al. 2012 and below), and there are a number of reasons why

network-based models are appropriate for the description and prediction of crime
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concentrations. The first is simply that much urban crime and policing activity happens on

(and along) streets, so that they represent a more meaningful representation of location

than arbitrarily-defined grid squares. In addition, the use of street segments is well-aligned

with the movement towards the use of micro-units within criminology (Brantingham et al.

2009). There is growing evidence that crime variability can best be explained at fine spatial

scales: Steenbeek and Weisburd (2016), for example, recently showed that 58–69 % of the

variability of crime can be attributed to street segments. This also highlights the utility of

network-level analysis in guarding against the ecological fallacy (Robinson 1950). This

refers to the assumption that risk will be uniform across an area, which may be particularly

problematic in cases where street segments that are co-located within an area (or grid cell)

experience very different risks. This highlights a potential shortcoming of grid-based

methods, which may fail to identify a high-risk segment if it is ‘cancelled out’ by a low risk

segment in the same grid cell: this has clear implications for predictive accuracy and

effective police deployment.

The issues outlined above are amplified further by the fact that research demonstrates

that features of the street network may themselves influence levels of crime. In particular,

studies have shown an association between the likelihood that people (offenders) will be

aware of particular street segments—and the criminal opportunities they provide—and

crime risk: a finding predicted by crime pattern theory. For example, using police data for

West Yorkshire (UK), Armitage (2007) shows that homes located on cul-de-sacs were at a

lower risk of burglary than those located on through roads, while a similar relationship was

found for violent crime during Operation Cul de Sac in Los Angeles (Lasley 1998). Beavon

et al. (1994) show that the risk of (various types of) crime on street segments in Ridge

Meadows (Canada) was positively associated with the number of roads to which a street

segment was connected (a simple index of permeability). Using data for Merseyside (UK)

and simple graphic theoretic metrics, Johnson and Bowers (2010) show that burglary risk

was associated with street type and the (number of different) types of streets to which a

street segment was directly connected; the more major roads a segment was connected to,

the greater the risk. Davies and Johnson (2014) use a more thorough approach to analysis,

using the graph theory metric betweenness to estimate the likely movement of people

through (and hence their awareness of) street segments. In line with previous studies, all

else equal, they find a positive association between estimated street segment usage and

burglary risk for the city of Birmingham (UK). Using a similar approach, Summers and

Johnson (2016) find the same pattern for incidents of outdoor serious violence in London.

These findings suggest the importance of the network in understanding the overall

(long-term) risk on segments, but there is also reason to expect that it will play a role in

short-term dynamics. Returning to our discussion of offender targeting strategies, if bur-

glars revictimise homes and their neighbours due to the awareness they develop of these

homes, it seems reasonable to suggest that risk might spread not just to neighbours, but also

to locations on directly connected street segments (Johnson and Bowers 2007; Davies and

Bishop 2013; Johnson and Bowers 2014). These segments are likely to also lie in the

awareness spaces of the offenders in question, who may also gain increased awareness

during the process of burgling homes. In grid based approaches, this spread of risk is

typically manifested as a process which acts uniformly in all directions. This is, however,

unrealistic, since crime is more likely to spread in some directions than others: some areas

are well-connected, whereas others may be separated by barriers such as rivers, railway

tracks and so on. Most fundamentally, it is the street network that determines what it is for

two places to be ‘near’: they may be close as-the-crow-flies, but far in terms of true travel

distance. The street network encodes the connections between segments, and hence
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determines the physical pathways along which offenders can travel (and develop aware-

ness) and along which risk can spread (Johnson and Bowers 2007; Davies and Bishop

2013).

The use of the street network also has practical motivation. In general, grid squares—

which could potentially intersect gardens, physical features (e.g. lakes) or barriers (e.g.

railway tracks)—are less well-defined targets for operational deployment than particular

street segments. Similarly, a grid cell might easily contain one or more unconnected street

segments, making patrol plans ambiguous and difficult to follow. Surprisingly little has

been written on the topic of map usability (see Bowers and Johnson 2014 for an account of

this), but it seems sensible to assume that intended routes that are physically viable and

integrated (Bowers et al. 2004) would be preferred to fragmented alternatives. Presumably,

when faced with a map that defines areas rather than streets, patrolling officers stick to the

accessible routes within the square, making large areas of the map redundant.

The principal aim of the current study is to examine the potential of one network-based

crime prediction method. Here, we focus on a network-based variant of ProMap, though

we emphasise that the overall approach could be applied to other methods. Since ProMap

is essentially a kernel-based method, its adaptation to the network setting relies on the

translation of kernel density estimation to network space, for which we build on the

approach developed by Okabe et al. (2009). This method has not previously been applied

to dynamic prospective crime mapping, and we further extend the approach here by adding

a temporal element. The resulting method therefore mirrors the prediction strategy intro-

duced in ProMap, but with calculations based on network space.

To the authors’ knowledge, there is only one (Shiode and Shiode 2014) other attempt to

produce a prospective network-based crime mapping system. This aimed to detect

emerging crime concentrations at the street level by performing repeated sweeps of the

network using a flexible search window as new incidents emerge. The result of this

geosurveillance method is an early warning system which generates micro-level ‘alarms’

(from the level of an individual street address upwards). This differs from the current

endeavour in two ways. The first is that the geosurveillance method relies purely on

patterns in historic data to make predictions, whereas the current method propagates risk

down the network in accordance with theories of offender behaviour (the model proposed

by Davies and Bishop (2013) also does this, but has not been applied to real data). The

second is that the geosurveillance method has not been tested for predictive accuracy; in

other words, its capacity to identify the locations of future crimes is not known. The

analysis presented here is therefore the first attempt to examine the predictive accuracy of a

prospective network-based mapping system. To avoid confounding the processes modelled

and the units of analysis employed, we compare the performance of a grid- and network-

based variant of ProMap, both of which are calibrated using a maximum likelihood

method.

Methods

In this section, we outline details of our predictive approach and describe the data analysed.

Although the overall predictive approach is conceptually similar to previous approaches,

the network context introduces a number of technical challenges; we will describe these

and the way in which they are overcome. We also introduce the protocol used for the fitting

of parameters and methods used to measure the predictive performance of the algorithm.
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The setting for the present study is a large city in the UK. The socio-demographic

characteristics of the area are broadly in line with those of other major UK cities, and there

are no distinctive geographical features which we would expect to influence the distri-

bution of crime substantially.

The Street Network: Data and Representation

Throughout the network-based analyses, space is represented in terms of the street net-

work, so it is logical to begin by describing how it is structured. Here, we use the Integrated

Transport Network data provided by Ordnance Survey (OS) via its MasterMap product.

This includes both physical and contextual information.

To perform calculations on the network, it is necessary to represent it in formal

mathematical terms. This can be done using terminology from graph theory (see Bollobás

2002), which concerns the structure of pairwise relationships between discrete entities.

Formally, a network G ¼ ðV ;EÞ is a set of vertices, V, together with a set of edges, E,

which connect pairs of vertices. In basic terms, a network is simply a collection of objects,

some pairs of which are linked: vertices that are connected by an edge are said to be

adjacent. The degree of a vertex is defined as the number of other vertices to which it is

adjacent.

The most natural way to express a street network in this form is to take vertices to

represent junctions (i.e. points at which roads intersect) and to place an edge between any

pair of junctions that are directly connected by a street. Edges therefore represent street

segments: the sections of road between immediately-neighbouring junctions. This is

referred to as the ‘primal’ representation (Porta et al. 2006b), and an example of its

construction is shown in Fig. 1. Although other representations exist (Jiang and Claramunt

2004; Porta et al. 2006a), the primal approach is taken here because it is the only one that

preserves geo-spatial information: metric distance, for example, is not well-defined in other

representations. In the form used here, each edge has an associated length, and points on

the network can be identified uniquely by specifying how far along a given edge they lie.

Police Recorded Crime Data

The prediction and evaluation presented here are based on police recorded crime data for a

major city in the UK. These crime records comprise all incidents of residential burglary

(a) (b) (c)

Fig. 1 The construction of the primal representation of a street network: a the original map, b nodes placed
at each junction, c links added between any pair of junctions connected by a street segment
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that occurred between 1st July 2013 and 31st August 2014, inclusive, of which there are

5,862. For each incident, the location is provided in terms of British National Grid

coordinates, with a resolution of 1 metre. Temporal information is provided in three forms:

the report date, and a ‘start’ and ‘end’ time for the estimated window during which the

crime could have occurred. In our analysis, we use the start of the window—the earliest

point that an incident could feasibly be prevented—as a proxy for the true event time. A

more sophisticated approach to dealing with temporal uncertainty using aoristic analysis

has previously been presented by Ashby and Bowers (2013), but we do not consider that

here to avoid introducing additional complications to the pre-existing technical challenges.

We did, however, repeat the analyses described below using the end of the window, with

our results indicating that the optimal bandwidths and predictive accuracy results for the

two cases are statistically indistinguishable (data not shown). We conclude, therefore, that

in the case of the current dataset, the choice of temporal data has no significant effect on

the prediction process; this may, of course, differ for other regions and crime types.

As we describe in detail below, it is necessary to divide the data into three non-

intersecting sets, which is common practice in statistical applications (Hastie et al. 2009).

This is illustrated in Fig. 2. The first 180 days of the data are used to ‘train’ the prediction

model. The next 60 days are used to find optimal prediction model parameters and are

termed the validation set. Finally, the remaining 90 days are used to assess the predictive

accuracy of the model and are denoted the testing set.

Since one of our predictive methods is network-based, it is necessary to express the

location of each incident in terms of its position on the street network. We therefore ‘snap’

each incident to the closest street segment. We verified that the Euclidean distance

involved in projecting each point was less than 50 m for all incidents considered here; in

fact, the mean distance was 18 m. This snapping process transforms the location of each

incident to a network point, specified in terms of its distance along the segment on which it

lies. Together with the temporal data, these locations form the data for our analysis.

Because the distances involved are so small, and because the process is applied for the data

used to both calibrate and test the predictive models presented below, we do not believe

this introduces significant bias to our analysis.

Grid and Planar Predictive Methods

The new predictive method described here is conceptually similar to the original grid-

based ProMap algorithm developed by Bowers et al. (2004). For a target time t and

location s, the prospective risk level at a given location (a relative measure) is calculated

by summing risk contributions from all preceding crimes that are sufficiently close in

space:

Fig. 2 Overview of the methodology in this study, showing the three divisions created from the crime data

J Quant Criminol

123



kgridðt; sÞ ¼
X

0\ci � s;ei � m

1

ci

� �
1

1þ ei

� �
ð1Þ

where ci is the number of weeks that have elapsed since crime i, ei is the number of 50

metre grid cells between location s and the location of crime i, s is the maximum temporal

lag (the temporal bandwidth) and m is the maximum spatial lag (the spatial bandwidth). The

crimes included in the summation are denoted source crimes; each crime is represented as

a point in time and space, ðti; siÞ.
We now generalise this original approach to a continuous two-dimensional planar space,

so that none of the variables are expressed in terms of discrete units such as grid cells or

weeks. This is an important step towards formalising the approach mathematically and will

make comparisons with the network model (detailed below) more straightforward. We also

modify the form of equation (1), so that the function within the sum is normalised (i.e. its

integral over all time and space is 1), again to ensure that the comparison is fair. Both of

these processes are relatively minor: the modified form remains fundamentally similar to

the original ProMap. By summing over a continuous, normalised function, however, the

resulting method becomes a form of space-time kernel density estimation (STKDE).

Kernel density estimation is a statistical technique which allows a continuous proba-

bility distribution to be estimated from empirical data. It is based on the concept of a kernel

function, which is a continuous normalised functional form that is peaked (or ‘centred’) at

a defined point. To produce an estimate from a set of data points, one such kernel function

is centred at each data point, and the sum of these is taken. This essentially produces a

‘smoothed’ version of the data, in which each point is replaced by a ‘bump’ and these are

superimposed upon each other. For spatial data, this produces a surface in which the

influence of each point is distributed across its immediate vicinity, while for temporal data

the influence is spread through time. In the context of crime prediction, these effects can be

taken to reflect spatio-temporal propagation of risk, and it is clear that the ProMap

approach is an informal version of this principle.

As for ProMap, we assume that the temporal and spatial components of the kernel

function are separable. This common assumption is a reasonable simplification in the

absence of any evidence to suggest that the function should be more complex. We also

make the same assumption that is implicit in ProMap, namely that the spatial propagation

of crime risk is isotropic, i.e. it extends uniformly in all directions. This is a necessary

approximation as the kernel function is global and therefore represents the spread of risk at

all source target times and locations. Variants of the KDE have been developed to relax

this isotropic assumption, such as the variable bandwidth nearest neighbour approach

(Mohler et al. 2011), but these are not without complications, and are beyond the scope of

this study. With these two assumptions in mind, we define two kernel components, f ðDsÞ
and gðDtÞ, which represent the spread of risk from a single source to a target over a time

lag of Dt and a straight-line distance of Ds, respectively. For any particular source i, these

source-target distances are given by Ds ¼ ks� sik (where this notation denotes the

Euclidean distance between s and si) and Dt ¼ t � ti, and the planar STKDE is then given

by

kplanarðt; sÞ ¼
X

i:ti\t

f ðks� sikÞgðt � tiÞ: ð2Þ

For our particular form, we choose an exponentially decaying function of time and a

linearly decaying function of distance, as follows:
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f ðDsÞ ¼
hS � Ds

h2S
if Ds� hS

0 otherwise

8
<

: ð3Þ

gðDtÞ ¼ 1

hT
exp �Dt

hT

� �
; ð4Þ

where the parameters hT and hS are the temporal and spatial bandwidths, respectively,

which must be defined (see below). Our choice of temporal kernel is motivated by previous

research concerning the time course of repeat victimisation (e.g. Townsley et al. 2000;

Sagovsky and Johnson 2007) which suggests that the distribution of inter-event times is

approximately exponential. In the spatial case, however, little evidence exists concerning

the form of propagation, and so the linear kernel was chosen as the simplest possible form.

Both of these functions are simple to implement and commonly used for KDEs (Genton

2002); however, we make no claim about the optimality of the forms used, and our aim in

this respect is only to explore the capability of the overall approach. Our method could

easily be extended to use any other valid kernels, of which several possibilities exist.

Nevertheless, one feature of the linear kernel does have an important advantage for our

current purposes: the fact that it is zero-valued at distances greater than hS naturally

imposes an upper threshold on the distance Ds over which risk may be transmitted. This is

especially important when dealing with network-based predictions, as we shall show.

Network-Based Kernel Calculation

The task of kernel density estimation is more complex for networks than it is for classical

Euclidean spaces. Network space is fundamentally one-dimensional, since streets are

linear, however at nodes (road junctions) the one-dimensional line ‘splits’ (see Fig. 3a) and

the domain has a tree-like structure. Furthermore, there are multiple possible routes

between two locations on a network; for example, it is possible to circumnavigate a block

both clockwise and counter-clockwise. We must therefore redefine our kernel function to

take this new spatial representation into account. We ultimately require a solution in which

the risk density decays linearly along an edge, so that the network KDE remains com-

parable with the planar KDE.

We start by changing the notation to show the explicit dependence on the location of the

source, s0, and the network path that connects s with s0, denoted p. Our spatial network

Fig. 3 Kernel calculation on networks: a for a kernel centred at s0, a one-dimensional kernel function must
be adapted to apply to each of the branches BC and BD; b the ‘equal-split’ approach, in which the remaining
density at a junction is divided equally between the ongoing branches (this shows a linear kernel as used in
our work)
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kernel function becomes k
ðpÞ
s0 ðsÞ. We apply the method developed by Okabe et al. (2009)

for evaluating a KDE on a network, based around the concept of an ‘equal-split’ kernel. In

this approach, risk propagates away from the source location s0 and, whenever a vertex is

reached, is divided equally between all subsequent branches. Figure 3b illustrates this: the

value of the kernel at B is split equally between BC and BD. Formally, if n
ðpÞ
1 ; . . .; n

ðpÞ
mðpÞ

denote the degrees of the m(p) vertices on a path between s0 and s, and DsðpÞ denotes the
length of the path, then the network kernel is defined as:

k
ðpÞ
s0 ðsÞ ¼ f ðDsðpÞÞ

ðnðpÞ1 � 1Þ. . .ðnðpÞ
mðpÞ � 1Þ

ð5Þ

Using this function as the kernel in a network-based version of the estimator given in (2)

can be shown to produce unbiased estimates (Okabe et al. 2009).

Equation 5 is valid for a single path between points s and s0. In reality, multiple paths

may exist between s and s0 and all must be taken into account when computing the full

contribution of the source at the target. In the event of a network cycle existing, which is

the case in almost all real street networks, there are in theory an infinite number of ways to

travel between two locations in the absence of any maximum distance parameter. For

example, one could walk any number of times around any given block en route. Cycles

such as these are necessarily ignored. The total contribution of the source at the target is

then calculated by summing over all non-cyclic paths between them:

ks0 ðsÞ ¼
X

p:s0!s

k
ðpÞ
s0 ðsÞ: ð6Þ

The temporal kernel component gðDtÞ remains unchanged and can be combined with

Eq. (5) to obtain a network-time KDE (NTKDE). Combining Eqs. 2–6, we arrive at the full

expression for the network KDE:

knetðt; sÞ ¼
X

i:ti\t

gðt � tiÞksiðsÞ

¼
X

i:ti\t

1

hT
exp � t � ti

hT

� � X

p : si ! s

DsðpÞi \hS

hS � DsðpÞi

h2Sðn1 � 1Þ. . .ðnmðpÞ � 1Þ

0
BBBBBB@

1
CCCCCCA
:

ð7Þ

In the final summation of Eq. (7), we have included the explicit condition that the path

length, DsðpÞi , should be less than the spatial bandwidth hS. This is an important aspect of

the efficient implementation of this algorithm, which essentially proceeds by carrying out

an exhaustive search for all non-cyclic network paths that satisfy this criterion.

Optimal Bandwidth Selection

The STKDE and NTKDE algorithms described above both require the specification of two

bandwidth parameters, hS and hT . The bandwidths have a major effect on the predictions

generated, so it is vital to select appropriate values. Myriad methods exist for this purpose,

including selecting values manually based on the desired appearance of the output, using a
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plugin bandwidth estimator and applying statistical cross-validation techniques (Sheather

2004; Arlot and Celisse 2010).

In this study, we employ a method closely related to cross-validation that is appropriate

for time series data (Bergmeir and Benı́tez 2012). The process is summarised in Algorithm

1 and Fig. 4. Broadly speaking, this approach involves optimising the log likelihood over a

60 day set of validation data. On each validation day, the crimes on all preceding days are

used to construct an STKDE or NTKDE. The likelihood is then given by the product of the

values of the KDE at the times and locations of the validation day crimes. To avoid

numerical errors that arise from taking the product of many small numbers, it is better to

use the logarithm (log) of the likelihood. One issue that can arise with this approach is in

cases where the KDE has a value of zero for one of the validation crimes, which can arise

when an incident occurs too far away (in space or time) from all previous crimes. This is

problematic because the logarithm of zero—the likelihood value in such cases—is unde-

fined. To avoid this, any log likelihood values below -27.6 (¼ logð10�12Þ) are manually

set to this value, thus ensuring validity in all cases (we do this rather than set the values to

be infinite simply to maintain real values). Essentially, this process imposes a minimal

level of confidence in any model—albeit a very low one—even if it has absolutely no

ability to account for one or more crimes in the validation set. This is purely a technical

point, however, since only cases which have little explanatory value are affected.

Valida�onTrainingDay 1

Day 2

Day 3

. .
 .

. . .

Fig. 4 Illustration of the bandwidth optimisation process. For each of 60 days of validation data, all crimes
on previous days are used to construct a prediction model, which is evaluated on that single day only

Algorithm 1 Algorithm for optimising STKDE or NTKDE bandwidths.
Initialise bandwidth arrays HT and HS each of length M
Define empty log likelihood matrix L of shape (M × M)
for i = 1 to M do {Loop over hT values}
for j = 1 to M do {Loop over hS values}
Set hT = (HT )i, hS = (HS)j
Initialise running tally of log likelihood l = 0
for t = 180 to 239 do {Loop over validation days}
Construct KDE with source data, (ti, si), subject to ti < t
Define validation data, (ti, si), subject to t ≤ ti < t + 1.
Let N denote the number of validation data points.
Evaluate KDE at validation data points to obtain N values, λ1, · · · , λN .

l = l +
N∑

k=1
log(λk)

end for
Fill in matrix: Li,j = l

end for
end for
Find the values of (hT , hS) that maximise L.
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Assessing Predictive Accuracy

We evaluate the predictive accuracy of the STKDE and NTKDE models using the hit rate

(Bowers et al. 2004). In order to define the hit rate, we must first specify the areal unit on

which we will make our predictions. Both the STKDE and the NTKDE provide point

estimates of the risk density, therefore they can be used to generate predictions on any

arbitrary areal unit by defining a number of representative sample points within that unit,

evaluating the KDE at those points and taking the mean value. In keeping with other crime

prediction methods (Mohler et al. 2011), we use a square grid of side length 150 m as the

areal unit for assessing the STKDE. We generate 15 sample points at random within each

grid cell and use the mean value as an approximation to the risk level within that cell. In

the case of the network-based approach, we use the network segment as the areal unit. In

this case, we place sample points approximately every 30 m along each segment, again

taking the mean value to represent the risk level. The hit rate metric naturally takes the

differing segment lengths into account.

A detailed description of the hit rate calculation is given by Bowers et al. (2004).

Briefly, this involves placing all areal units for a given prediction time window in ranked

order on the basis of their predicted risk, starting with the highest. For any given level of

coverage—calculated as a proportion of the total area in the planar case and total network

length in the network case—the highest ranked units are then identified, up to the point

where their cumulative coverage is equal to that required. The selected units are then

compared with the testing data to see how many (future) crimes are ‘captured’, meaning

that they fall within the selected region. The hit rate is expressed as the proportion of

crimes captured relative to the total number in the testing data. The behaviour of this hit

rate at varying levels of coverage can then be examined. Just as for the optimal bandwidth

selection, a prediction time window of 1 day is used and the window is advanced by 1 day

per iteration (see Fig. 4 for reference). As illustrated by Fig. 2, we assess the hit rate over

90 predictive iterations (i.e. 90 days). These are either aggregated to obtain a mean hit rate,

or considered separately to determine statistical significance (see below).

When comparing planar and network-based methods it is important to make sure that

the comparison is fair. While network coverage may be linked fairly straightforwardly to

the amount of policing resources required (e.g. based on a rough walking speed), the

situation is less clear in the case of grid squares. As discussed in the introduction, the

number of street segments that lie within a grid cell varies depending upon its location. We

cannot therefore directly compare the results by area coverage with those by network

coverage. To resolve this difficulty, we define the ‘network intersection coverage’ of a

grid-based method as the total network length that intersects with the selected grid squares,

divided by the total network length. This measure is illustrated in Fig. 5 and provides a

common reference point by effectively translating grid cells into regions of the network.

Implicit within this approach is the assumption that police officers would attempt to cover

the full extent of the network intersection when targeting a cell. In practice, police officers

are more likely to choose one or two representative segments for their attention, reducing

the effective coverage. This issue is beyond the scope of the present study, as it would

require detailed studies of police patrol habits.

Having computed the predictive accuracy of the two methods, it is possible to compare

mean values directly. However, the statistical significance of any such result is unknown.

Rather than pooling all 90 daily prediction accuracy measures to compute a mean value,

we may consider the values for the two methods as a paired daily time series. Dealing with
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this representation is complicated by the possibility of temporal autocorrelation in the

values, due to the fact that crime levels are themselves correlated in time (Johnson and

Bowers 2004). We therefore make the simplifying assumption that the difference in pre-

dictive accuracy between two methods is independent of the underlying crime rate,

meaning that the time series of the differences comprises independent and identically

distributed random variables. We verify that this assumption is justified by computing the

autocorrelation and showing that it is below the 5 % confidence interval. The two methods

may then be compared using standard statistical tests for paired observations, such as

Wilcoxon’s signed-rank test (WSR; see Diebold and Mariano 1995). WSR is a distribu-

tion-free test that is used to compare two related samples by assessing whether their mean

population ranks differ. The test statistic is given by

W ¼
X90

i¼1

Ri sgnðynet;i � ygrid;iÞ
� �

; ð8Þ

where ynet;i and ygrid;i denote the hit rate on day i from the NTKDE and STKDE respec-

tively, Ri is the rank of the ith difference, and sgn is the sign function. By convention,

sgnð0Þ ¼ 0, meaning that exact matches are not included. The statistical significance of

W can be obtained using a lookup table. We use a single tailed lookup to assess whether

one method is significantly better than the other.

Results

Optimal Bandwidth Selection

Figure 6 shows the log likelihood surfaces computed using the planar and network KDE

methods. To recap, these represent the most likely bandwidths that would lead to the

distribution of crime events observed examined during the (60-day) calibration window. In

both cases, a well-defined maximum is evident; while this is less visually striking in the

case of the network KDE, the optimum is readily discernible when the data are rescaled to

show only the highest likelihood values. The optimal bandwidths are 55 days and 610 m

Fig. 5 Illustration of the network
intersection coverage measure.
The plot shows a portion of the
network overlaid with grid
squares. Coloured lines show the
intersection between the network
and selected grid squares. The
values in the legend show the
network intersection coverage;
for reference, if coverage was
measured by area alone, each
grid square would account for
6.25 % (Color figure online)
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for the planar KDE and 78 days and 820 m for the network KDE, and these values are used

in what follows.

That the spatial bandwidths for the two methods differ is intuitively reasonable for two

reasons. First, the network distance between two points will always be greater than or equal

to the straight-line distance. Moreover, according to the theory discussed above, network

distance better reflects the urban reality and should better encode offender activity/

awareness spaces. The difference in temporal bandwidths is not readily explained in terms

of simple differences in the physical properties of the network or grid used; however, it

should be emphasised that spatial and temporal bandwidths would not necessarily be

expected to be independent in this sense. The change in spatial structure may simply mean

that the greatest performance is found by including events that occur over longer temporal

scales: the two methods simply capture different incidents. Regardless of the reason for the

disparity, though, it is worth noting that the network KDE generates substantially higher

log likelihood values around the optimum, suggesting that it is has greater predictive

power, at least for the validation data.

The apparently rapid drop in likelihood for smaller spatial bandwidths occurs as a result

of the estimation procedure used, which is necessary to avoid numerical errors that can

occur in the computation of the likelihood values (see ‘‘Methods’’ section). This leads to

the visible ‘shelf’ at around 300 m for the planar method and 450 m for the network

method. However, this is not an artefact of the procedure: models with shorter bandwidths

are simply found to fit the data very poorly.

Crime Risk Heatmaps

Having computed optimal bandwidth parameters using the validation data, it is possible to

generate predicted risk surfaces for a prospective time window of 1 day. Figure 7 shows

surfaces for two different days (2 months apart), computed with the new network- and

grid-based KDE methods. Comparing the left and right panels, we see examples of per-

sistent risk, such as the hot areas close to the central and east sides of the plot, and more

dynamic shifts in the risk surface, such as the group of roads in the south-west corner. This

is to be expected given the theoretical perspectives discussed in the introduction.

Figure 7 illustrates several important differences between the two KDE approaches.

First, comparing the top and bottom panels it is clear that the output of the NTKDE is

significantly more specific, showing at a glance which street segments in the displayed
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Fig. 6 Likelihood surfaces used to compute the optimal temporal and spatial bandwidth in the STKDE
(a) and NTKDE (b). Likelihood values below the 25th percentile are not shaded for clarity. Dashed lines
indicate the location of the maximum
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region have the highest anticipated risk. As discussed previously, multiple segments

generally intersect a single grid cell, meaning that targeting a single cell is a challenge for

police officers without information about where they should attend within that cell. Several

examples are also readily apparent in which the grid-based method fails to identify small

hotspots identified by the network-based approach. For example, the risky groups of streets

in the northwest, northeast, and southwest corners are not flagged by the grid-based

approach for this reason: their risk is effectively ‘diluted’ across multiple grid squares and

therefore they are not highly ranked. Conversely, 40–50 % of the top-ranked grid cells do

not contain any portions of hot street segments. This occurs because the grid-based

approach ignores the underlying street structure within the city, permitting risk to diffuse in

all directions regardless of the physical reality. These cells are therefore spurious detec-

tions that are flagged only because of their Euclidean proximity to a number of other

crimes.

Fig. 7 (Top row) Network heatmaps showing the predicted risk surface on the 26 February 2014 (left) and
27 April 2014 (right). Darker shades of red indicate higher risk. Grid squares are overlaid for comparison.
(Bottom row) Grid heatmaps for the same two dates. Darker shades of red indicate higher risk. (All figures)
Grid squares marked in dark blue and street segments marked in light blue are in the top 1 % ranked by
predicted risk (Color figure online)

J Quant Criminol

123



Predictive Accuracy

Figure 8 shows the mean hit rate, aggregated over the 90 days of testing data, for the

NTKDE and STKDE approaches. As discussed (see ‘‘Methods’’ section), the notion of

coverage has different meanings in the network and planar contexts. In order to ensure a

fair comparison, we therefore evaluate the performance of the STKDE using the ‘network

intersection coverage’ method described in ‘‘Methods’’ section. This takes into account the

variation in street length between grid cells, since the percentage coverage is based on the

total length of road inside the selected squares. This means that grid cells which contain

greater road length represent a greater fraction of coverage than would be estimated on the

basis of their area alone. Figure 8 shows the overall hit rates of the two approaches when

coverage is calculated on this basis. The background shading indicates coverage levels

where the NTKDE hit rate is significantly higher than the STKDE approach at the 5 %

significance level, assessed using the WSR test. We verified that the difference in daily hit

rates for the two methods does not have any significant autocorrelation (p ¼ 0:05) up to a

lag of 21 days, as this is a required assumption of this approach. For this comparison, the

NTKDE is more accurate per unit of road considered, having a hit rate that is 1.2 times as

good as the grid-based equivalent for most coverage levels.

As the above analysis uses data aggregated across all days, it is possible (though

unlikely) that the result obtained is influenced by a small number of unusual days where the

NTKDE performs substantially better than the STKDE. Thus, to gain greater insight into

the relative performance of the two methods, we also assessed the daily difference in hit

rate over the 90 days of test data. For this purpose, we define the relative hit rate as the

absolute difference in the daily hit rates (for a given coverage, such as 10 % of the study

area) between the network and grid-based approaches, divided by the mean grid-based hit

rate (measured by network intersection coverage) over the full testing dataset. A positive

value therefore indicates that the network method was more effective on a given day. A

value of 0 represents identical performance from the two methods, for example, while a

value of 1 indicates that the network method was approximately twice as accurate as the

Fig. 8 Mean hit rate against coverage for the network and grid-based KDE prediction approaches,
computed over 90 consecutive days
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grid-based approach. The results are shown in Fig. 9 for three different coverage levels (2,

5 and 10 %). At a coverage level of 2 %, the two methods have equivalent accuracy on

approximately one third of days. However, on around one quarter of the 90 days the

NTKDE outperforms the STKDE by a factor of 2 or more. At a coverage level of 10 %, the

distribution is narrower, but on over a quarter of the days the difference in performance is

over half of the mean STKDE performance in favour of the NTKDE. Overall, the mean of

these values at a coverage level of 10 % is 0.25, which corresponds to a mean improve-

ment of 25 % on a daily basis. The WSR test confirms that the results are highly statis-

tically significant, with the NTKDE performing better at the majority of coverage levels

between 1 and 20 %.

Discussion

In the last decade, research on the spatial (and temporal) distribution of crime has begun to

move from the task of description to that of prediction. To date, for almost all attempts at

prediction, the units of analysis considered have either been areas (e.g. police beats), or

regular (often arbitrarily) sized grid cells. This, however, fails to account for the effect of a

key element of the urban backcloth, upon which much human activity takes place: the

street network. Such activity includes the movement of ordinary citizens through places,

which influences the conditions for crime and the activities of offenders and the police.

With this in mind, in this paper we have introduced a network-based method for the

prospective identification of crime locations. The aim of our work was to build on existing

predictive approaches, while taking advantage of the theoretical and practical advantages

of the network setting.

0
5
10
15
20
25
30
35

2%

0

5

10

15

20

25

Co
un

t

5%

Network:planar relative daily hit rate
−6 −4 −2 0 2 4 6
0
5
10
15
20
25
30

10%

Fig. 9 Histograms showing the
predictive accuracy of the
NTKDE relative to the STKDE at
three different coverage levels (2,
5 and 10 %). The improvement
factor is given by the difference
in daily hit rate between the two
methods divided by the mean
planar hit rate. Positive values
indicate that the NTKDE
performed better. The red dashed
line indicates the mean value in
each case
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Our technical contributions are two-fold: we have shown how spatio-temporal kernel

methods can be translated into network space, and have introduced a fitting procedure

which allows the optimal parameters for such a model to be identified. Furthermore, we

have shown how the accuracy of network-based predictions can be measured in such a way

that they can meaningfully be compared with grid-based alternatives. When applied to a

sample of residential burglary data for a major city in the UK, the performance of the

algorithm—tested over multiple (90) days—is found to be substantially better than that of

its grid-based counterpart, with, for example, 20 % more crime identified at a coverage

level of 5 %. Statistical analysis confirms that the improvement in accuracy is highly

significant at coverages in the range 1–20 %. We now consider the theoretical and practical

interpretation of these results.

The basis for our predictive approach is, ultimately, the empirically-observed tendency

of crime to concentrate in space: it is this fact that suggests that a disproportionate volume

of crime can be captured by identifying a small fraction of places. It is clear, therefore, that

Weisburd (2015) ‘law of crime concentration’ is highly relevant to our work. Most

immediately, it suggests that concentration of this type is ubiquitous in real-world, and

that—crucially for our approach—it is meaningfully manifested at the street segment level.

This finding alone represents a strong rationale for the development of network-based

prediction methods. In addition, however, the law’s prediction that levels of concentration

are consistent across contexts also has implications for work in this area. This suggests that

the volume of crime that can potentially be captured at small spatial scales—essentially the

‘predictability’ of crime—will be broadly similar across settings. This defines a clear

objective for prediction: if it can be said with confidence that Y% of incidents will be

located on X% of street segments, then the task of an algorithm is to identify those

segments.

In fact, a dynamic predictive algorithm such as ours seeks to go further than this, by

exploiting day-to-day fluctuations in the distribution of crime. Even while accounting for

the law of crime concentration, significant variation is likely to be seen in the precise daily

distribution of crime: the most risky streets over a period of 1 year (for example) will not

necessarily be the most risky on every individual day within it. Indeed, research on space-

time clustering suggests that this will not be the case, and that significant short-term effects

can be seen in the spatial distribution of crime. Dynamic models such as ours seek to

capitalise on this: rather than identifying the X% highest-risk streets across an extended

period, a different X% of segments can be chosen each day. Considered in this way, the law

of crime concentration effectively represents a lower limit on the potential ‘hit rate’ of a

dynamic model: if segments can be re-ordered each day, then the level of concentration is

guaranteed to be at least as pronounced as it is when aggregated over a longer period.

From the perspective of the law of crime concentration, our results have several

implications. Most immediately, they underline the significance of the street segment as a

meaningful and useful unit of analysis in understanding the spatial distribution of crime.

Our findings show that not only do segment-level effects account for a large amount of risk

variation (as demonstrated previously; see Steenbeek and Weisburd 2016), but that this

variation translates into predictive value. In addition to this, the fact that our model is

dynamic has a number of consequences: if its relative success can be taken as evidence that

it consistently identifies the locations of greatest crime concentration, then this implies that

exactly which set of micro-places account for the greatest risk changes somewhat over time

(for residential burglary at least). This, it should be noted, is perfectly consistent with the

law of crime concentration: the fact that levels of concentration are stable over time does

not mean that the actual locations of crime are. Rather, it simply highlights the importance
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of considering both the spatial and temporal dimensions when examining crime concen-

tration. Indeed, examining the level of overlap between time periods in terms of the

locations of greatest crime concentration may be an interesting topic for future research.

Further research is also necessary to explore other ways in which the algorithm can be

optimised, both in technical and practical terms. One particular issue concerns the temporal

unit of analysis for which predictions are generated. In this work, we focused on a pre-

diction window of 1 day. While convenient, this may fail to capture some effects since it

has been shown that crime levels vary by time of day (Felson and Poulsen 2003), and a

number of studies have demonstrated the utility of examining risk over the course of the

day (Ratcliffe 2004; Johnson et al. 2007b; Sagovsky and Johnson 2007). There is clearly a

middle ground to be found with respect to the frequency with which maps are generated: it

may be advantageous to capture time-of-day effects, but at present very frequent updating

is likely to be excessive and may be difficult to act upon operationally. The utility of real-

time updating should be explored in future research both in terms of practical implications

and algorithmic accuracy. Exploration of practical deployment issues will require a dif-

ferent approach to that taken here, and will likely involve field research to establish the

various constraints within which the police operate. In terms of technical issues, our

approach can, in theory, be applied at any temporal scale with no modifications required,

but two practical concerns exist. The first is that for some offences the exact time a crime

occurs will be unknown. For example, in the case of burglary, offences generally occur

when the victim is away from home and so only the interval over which an offence could

have occurred will be known with certainty. For burglary, this will typically be up to an

eight-hour (or so) time window (Ratcliffe 2004; Sagovsky and Johnson 2007) meaning that

it may not be possible to reliably establish the accuracy of predictions produced for shorter

intervals. The second issue is that reducing the time aggregation window will result in

fewer crimes per prediction, which we expect to produce greater variation around the mean

hit rate. This too may make the estimation of the accuracy of methods less reliable. For

now, we suggest that future work should explore the accuracy of algorithms over ‘periods’

or ‘shifts’ of the day that (ideally) mirror those used for police resourcing.

A number of further theoretical implications also arise from our findings. In motivating

the model presented, we have built upon existing theory concerned with offender targeting

strategies in general, and near repeat victimisation in particular. Specifically, we have

elaborated upon the offender-as-forager hypothesis, which itself builds upon crime pattern

theory and ideas from behavioural ecology. In doing so, we have considered more thor-

oughly how the street network might shape the dynamic development of offender

awareness of criminal opportunities (see also Johnson 2014), and how this in turn might

lead to the propagation of risk though the street network. With regard to the relationship

between network structure and criminal behaviour, our results can thus be considered to

provide further support for the offender-as-forager hypothesis and crime pattern theory.

Further work, however, will be required to establish precisely how the propagation of risk

occurs, what factors (if any) influence it, and whether it can be encoded in a more nuanced

way than was used here. To elaborate, in the current model, the anticipated risk from each

crime propagates through the network from one street segment to the next, decaying in

intensity as network distance increases. However, factors other than the structure of the

street network may influence whether risk spreads from one street segment to another. For

example, risk may be more likely to spread to street segments that contain similar homes,

that are perhaps near to other (criminogenic) facilities (e.g. Bernasco and Block 2011), or

to those street segments that are located within areas with low social cohesion (e.g.

Sampson et al. 1997). Examining such issues represents an agenda for future research.
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Here we simply wish to assert promise for approaches that consider theoretical reasons for

risk propagation. They could usefully be compared in future studies with scanning

approaches based on networks, such as that offered by Shiode and Shiode (2014).

Our algorithm, and general approach, have potential to be of practical use in real-world

policing contexts. While the predictive accuracy alone suggests that the method would

compare favourably with other existing approaches, there are a number of logistical rea-

sons why it may also be beneficial. Predictions expressed in terms of specific street seg-

ments, for example, are particularly well-suited to operational deployment, since it is in

exactly these terms that police officers would typically plan their routes. This may be of

benefit with respect to implementation compliance, which is known to be a critical issue in

the context of targeted policing initiatives. In general, such predictions would appear to

offer a number of advantages: they offer an unambiguous indication of where officers

should patrol which, in turn, is verifiable by senior officers. A further potential advantage is

that police presence on road networks does not need to be restricted to on-foot officers.

These maps offer more usability to vehicular patrols, and could potentially lead to the

development of intelligent routing procedures that enable visible presence through police

cars on route to non-urgent calls. Generally, joining up the segments of high risk into the

most convenient (e.g. shortest or least fragmented) patrol routes appears to be a means of

making such maps as usable as possible.

This point does highlight the fact that, despite their promise, there are further questions

to be answered concerning the practical implications of street network based prediction

approaches. In the original description of the prospective mapping approach, Bowers et al.

(2004) discussed the extent to which resulting areas of predicted risk were themselves

clustered or, in contrast, more dispersed. This affects the practicality of resulting maps for

patrolling—if identified segments are dispersed, a lot of time may be spent travelling

between them—and has further implications for the law of concentration at places. Further

research might compare predictive techniques on dispersal metrics to discern whether

network approaches lead to more fragmentation. Such metrics could also examine typical

patterns of fragmentation of high risk segments more generally, to add to the crime

concentration literature. In any case, we would argue that due to their nature, segments are

inherently more ‘connectable’ spatially than their grid based counterparts.

There are a number of other potential avenues for further research in this domain. Most

obviously, there is a need to test the performance of the algorithms in alternative settings:

in other cities and countries, and for other crime types. In addition to this, however, there is

broad scope for the development of algorithmic variations. In this work, we chose a

relatively simple predictive algorithm—a kernel-based approach—in order to place the

emphasis on the network context (and to avoid confounding the comparisons made). The

general framework, however, could be applied to any predictive method, including others

which have performed well in grid-based implementations. The adaptation of these

algorithms, and the development of novel approaches tailored to the network context in

particular, represents an exciting direction for further work.
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