2,546 research outputs found

    The physical and chemical properties of human sweat and factors affecting the water balance in confined spaces Final report, 1 Jul. 1965 - 30 Jun. 1968

    Get PDF
    Physical and chemical properties of human sweat and factors affecting water balance in confined space

    The Physical and Chemical Properties of Human Sweat and Factors Affecting the Water Balance in Confined Spaces Semiannual Status Report No. 2, 1 Jan. - 30 Jun. 1966

    Get PDF
    Physical and chemical properties of human sweat and factors affecting water balance in confined space

    Aerodynamic heating rate distributions induced by trailing edge controls on hypersonic aircraft configurations at Mach 8

    Get PDF
    Aerodynamic surface heating rate distributions in three dimensional shock wave boundary layer interaction flow regions are presented for a generic set of model configurations representative of the aft portion of hypersonic aircraft. Heat transfer data were obtained using the phase change coating technique (paint) and, at particular spanwise and streamwise stations for sample cases, by the thin wall transient temperature technique (thermocouples). Surface oil flow patterns are also shown. The good accuracy of the detailed heat transfer data, as attested in part by their repeatability, is attributable partially to the comparatively high temperature potential of the NASA-Langley Mach 8 Variable Density Tunnel. The data are well suited to help guide heating analyses of Mach 8 aircraft, and should be considered in formulating improvements to empiric analytic methods for calculating heat transfer rate coefficient distributions

    Interference heating from interactions of shock waves with turbulent boundary layers at Mach 6

    Get PDF
    An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods

    Pressure and thermal distributions on wings and adjacent surfaces induced by elevon deflections at Mach 6

    Get PDF
    Surface pressure distributions and heat transfer distributions were obtained on wing half-models in regions where three dimensional separated flow effects are prominent. Unswept and 50 deg and 70 deg swept semispan wings were tested, for trailing-edge-elevon ramp angles of 0 deg, 10 deg, 20 deg, and 30 deg, with and without cylindrical and flat plate center bodies and with and without various wing-tip plates and fins. The data, obtained for a free stream Mach number of 6 and a wing-root-chord Reynolds number of 18.5 million, reveal considerably larger regions of increased pressure and thermal loads than would be anticipated using non-separated flow analyses

    Weak incident shock interactions with Mach 8 laminar boundary layers

    Get PDF
    Weak shock-wave interactions with boundary layers on a flat plate were investigated experimentally in Mach 8 variable-density tunnel for plate-length Reynolds numbers. The undisturbed boundary layers were laminar over the entire plate length. Pressure and heat-transfer distributions were obtained for wedge-generated incident shock waves that resulted in pressure rises ranging from 1.36 to 4.46 (both nonseparated and separated boundary-layer flows). The resulting heat-transfer amplifications ranged from 1.45 to 14. The distributions followed established trends for nonseparated flows, for incipient separation, and for laminar free-interaction pressure rises. The experimental results corroborated established trends for the extent of the pressure rise and for certain peak heat-transfer correlations

    Methods for estimating pressure and thermal loads induced by elevon deflections on hypersonic-vehicle surfaces with turbulent boundary layers

    Get PDF
    Empirical anaytic methods are presented for calculating thermal and pressure distributions in three-dimensional, shock-wave turbulent-boundary-layer, interaction-flow regions on the surface of controllable hypersonic aircraft and missiles. The methods, based on several experimental investigations, are useful and reliable for estimating both the extent and magnitude of the increased thermal and pressure loads on the vehicle surfaces

    Glacial Deposits of South-Central Fayette County, Ohio

    Get PDF
    Glacial deposits are common and varied across Ohio. These deposits chiefly include lodgment till, ablation till, and outwash. All of these sediment types can be found by drilling into the subsurface of Fayette County, Ohio. The study region, located in the south-central portion of Fayette County (along Miami Trace Road), was examined for glacial deposits using data collected from water well logs and drilling reports. Additional data sources including topographic maps, open-file bedrock geology maps, and open-file bedrock topography maps were used and a cross-section constructed. Variations in bedrock topography record effects of the Teays Stage drainage and the Deep Stage drainage, which in turn influences the thickness of drift. The overlying glacial sediments consistently show an upward pattern of hardpan, sand, and oxidized clay loam in both the ground moraine and end moraine landforms. This sequence is interpreted to record a glacial advance, an increase in meltwater, and the deposition of the uppermost layer either from supraglacial/englacial debris or by a second advance of the Wisconsinan ice sheet.No embarg

    Part 1. Design and Synthesis of Cysteine/Cystine Prodrugs and Bioisosteres Including Symmetrical and Unsymmetrical Disulfides Designed to Increase Cystine Levels in the CNS in Order to Drive the Cystine/Glutamate Antiporter: A Novel Treatment for Schizophrenia and Drug Addiction. Part 2. Design and Synthesis of Subtype Selective Ester Bioisosteres of BZR Ligands for Gabaa/Benzodiazepine Receptors to Enhance Metabolic Stability

    Get PDF
    Part 1. Schizophrenia is a debilitating disorder that affects almost 1% of the world\u27s population; pharmacotherapy expenditures for this disorder exceed $10 billion dollars even though existing medications exhibit a poor safety/efficacy profile. It is estimated that 75% of patients discontinue drug treatment, in part due to poor safety/efficacy. The current data set demonstrates that cysteine prodrug NAC reverse the behavioral and neurochemical effects of PCP used to model schizophrenia. As a result cysteine prodrugs represent a highly novel approach to treating schizophrenia; indeed, these compounds may ultimately be more effective than existing medications because these drugs target the pathology underlying schizophrenia and reverse behaviors used to model negative symptoms and diminished cognition produced by PCP, which are behaviors and symptoms that are not treated with current first line medications. Specifically, therapeutic endpoints produced by cysteine prodrugs include increasing stimulation of group II metabotropic glutamate receptors and restoring levels of glutathione. The latter effect has the potential to reverse several specific abnormalities that have been observed in schizophrenia including increased oxidative stress, decreased NMDA receptor function, altered gene expression, and abnormal cell proliferation / synaptic connectivity. Throughout this study, multiple series of compounds have been presented and explored, specifically 2 series of cysteine/cystine prodrugs, 2 series of cysteine/cystine bioisosteres and 1 series involving the coupling of two different series of compounds, namely, unsymmetrical disulfides ( mixed dimers). Also in this study, it will be shown through the use of in vivo and in vitro screening methods, diketopiperazine cystine prodrug monomers and dialkylated versions show high promise as novel antipsychotic agents. Furthermore, the diketopiperazine cystine prodrug dimers and dialkylated dimers also have shown promise in becoming novel antipsychotic agents by overcoming the detrimental effects of PCP-induced deficits in sensorimotor gating by restoring pre-pulse inhibition in multiple screenings. Bioisosteres of cysteine and cystine have shown vast improvements over N-Acetylcysteine by competing with C14 uptake and increasing glutamate levels by driving the cystine/glutamate antiporter. It has also been shown that simple modifications to the cysteine/cystine moiety also improve outcomes far greater then N-Acetylcysteine alone. Once the most effective compounds are determined by screening methods, the research strategy benefits by combining the two such compounds as an unsymmetrical disulfide in order to enhance their effects and help eliminate their disadvantages. As an early example to this approach two mixed dimers were synthesized and have shown extremely positive results in screening methods described here. Part 2. A series of 1,4-benzodiazepines and imidazobenzodiazepines including bioisosteric ligands was synthesized in search of subtype selective ligands for GABAA/benzodiazepine receptor subtypes. In this study, it was clear that the improved method for synthesizing benzodiazepines was successful. This is based on the number and quantities of numerous compounds synthesized utilizing the improved method. Although the efficacy of XHe-II-053 (4) was decreased in Phase I because of the metabolism of the C-3 ester to the acid, the bioisostere EMJ-I-026 (5) has been shown to exhibit non-sedating anxiolytic activity in mice as well as a binding/oocyte profile in vitro consistent with a non-sedating anxiolytic. Seven bioisosteric analogues were designed in order to circumvent any potential metabolic liability in humans of the previously described ligand. In fact, the bioisosteric analogues were much more stable in human liver microsomes than XHe-II-053 (4) again indicating these bioisosteres are potential nonsedating anxiolytics as well as useful for treatment of anxiety disorders in human populations. These ligands were also stable on human blood, brain and kidney. Gratifyingly, ligand 5 was clearly an fÑ3 Bz/GABAergic receptor subtype selective ligand at pharmacologically relevant doses (approximately 100 to 200 nM) and, presumably, provides an agent to study physiologically processes mediated by fÑ3 subtypes including anxiety and, in addition, was much more stable on human liver microsomes. In this regard fÑ3 subtype selective ligand, oxadiazole 5 (EMJ-I-026), has been evaluated in the light dark paradigm and clearly is a nonsedating anxiolytic, wherein this ligand was anxiolytic with no sedative properties, in vivo, as compared to diazepam. This study indicated that the ester function in these molecules can be replaced with a metabolically more stable ester bioisostere and still retain anxiolytic activity. The indepth study of these ligands in animal models and other receptor systems are underway by collaborators

    Mathematical Rebuses

    Get PDF
    • …
    corecore