1,502 research outputs found
Multipole (E1, M1, E2, M2) transition wavelengths and rates between states with n<= 6 in heliumlike carbon, nitrogen, oxygen, neon, silicon, and argon
Transition wavelengths and rates are given for E1, E2, M1, and M2 transitions
between singlet and triplet S, P, D, and F states in heliumlike ions of
astrophysical interest: carbon, nitrogen, oxygen, neon, silicon, and argon. All
possible transitions between states with n <= 6 are considered. Wave functions
and energies are calculated using the relativistic configuration-interaction
(CI) method including both Coulomb and Breit interactions. For transitions to
the ground state, the present theoretical wavelengths agree to five digits with
precise measurements.Comment: 8 pages of text 97 pages of tables submitted to Atomic & Data Nuclear
Datable
Recommended from our members
Host plant recognition by the root feeding clover weevil, Sitona lepidus (Coleoptera: Curculionidae)
This study investigated the ability of neonatal larvae of the root-feeding weevil, Sitona lepidus Gyllenhal, to locate white clover Trifolium repens L. (Fabaceae) roots growing in soil and to distinguish them from the roots of other species of clover and a co-occurring grass species. Choice experiments used a combination of invasive techniques and the novel technique of high resolution X-ray microtomography to non-invasively track larval movement in the soil towards plant roots. Burrowing distances towards roots of different plant species were also examined. Newly hatched S. lepidus recognized T. repens roots and moved preferentially towards them when given a choice of roots of subterranean clover, Trifolium subterraneum L. (Fabaceae), strawberry clover Trifolium fragiferum L. (Fabaceae), or perennial ryegrass Lolium perenneL. (Poaceae). Larvae recognized T. repens roots, whether released in groups of five or singly, when released 25 mm (meso-scale recognition) or 60 mm (macro-scale recognition) away from plant roots. There was no statistically significant difference in movement rates of larvae
Non-Perturbative String Equations for Type 0A
Well-defined non-perturbative formulations of the physics of string theories,
sometimes with D-branes present, were identified over a decade ago, from a
careful study of double scaled matrix models. Following recent work which
recasts some of those old results in the context of type 0 string theory, a
study is made of a much larger family of models, which are proposed as type 0A
models of the entire superconformal minimal series coupled to gravity. This
gives many further examples of important physical phenomena, including
non-perturbative descriptions of transitions between D-branes and fluxes,
tachyon condensation, and holography. In particular, features of a large family
of non-perturbatively stable string equations are studied, and results are
extracted which pertain to type 0A string theory, with D-branes and fluxes, in
this large class of backgrounds. For the entire construction to work, large
parts of the spectrum of the supergravitationally dressed superconformal
minimal models and that of the gravitationally dressed bosonic conformal
minimal models must coincide, and it is shown how this happens. The example of
the super-dressed tricritical Ising model is studied in some detail.Comment: 29 pages LaTe
Tachyon Condensation, Open-Closed Duality, Resolvents, and Minimal Bosonic and Type 0 Strings
Type 0A string theory in the (2,4k) superconformal minimal model backgrounds
and the bosonic string in the (2,2k-1) conformal minimal models, while
perturbatively identical in some regimes, may be distinguished
non-perturbatively using double scaled matrix models. The resolvent of an
associated Schrodinger operator plays three very important interconnected
roles, which we explore perturbatively and non-perturbatively. On one hand, it
acts as a source for placing D-branes and fluxes into the background, while on
the other, it acts as a probe of the background, its first integral yielding
the effective force on a scaled eigenvalue. We study this probe at disc, torus
and annulus order in perturbation theory, in order to characterize the effects
of D-branes and fluxes on the matrix eigenvalues. On a third hand, the
integrated resolvent forms a representation of a twisted boson in an associated
conformal field theory. The entire content of the closed string theory can be
expressed in terms of Virasoro constraints on the partition function, which is
realized as wavefunction in a coherent state of the boson. Remarkably, the
D-brane or flux background is simply prepared by acting with a vertex operator
of the twisted boson. This generates a number of sharp examples of open-closed
duality, both old and new. We discuss whether the twisted boson conformal field
theory can usefully be thought of as another holographic dual of the
non-critical string theory.Comment: 37 pages, some figures, LaTe
Third-order relativistic many-body calculations of energies and lifetimes of levels along the silver isoelectronic sequence
Energies of 5l_j (l= s, p, d, f, g) and 4f_j states in neutral Ag and Ag-like
ions with nuclear charges Z = 48 - 100 are calculated using relativistic
many-body perturbation theory. Reduced matrix elements, oscillator strengths,
transition rates and lifetimes are calculated for the 17 possible 5l_j-5l'_{j'}
and 4f_j-5l_{j'} electric-dipole transitions. Third-order corrections to
energies and dipole matrix elements are included for neutral Ag and for ions
with Z60. Comparisons are made
with available experimental data for transition energies and lifetimes.
Correlation energies and transition rates are shown graphically as functions of
nuclear charge Z for selected cases. These calculations provide a theoretical
benchmark for comparison with experiment and theory.Comment: 8 page
Energy levels and lifetimes of Nd IV, Pm IV, Sm IV, and Eu IV
To address the shortage of experimental data for electron spectra of
triply-ionized rare earth elements we have calculated energy levels and
lifetimes of 4f{n+1} and 4f{n}5d configurations of Nd IV (n=2), Pm IV (n=3), Sm
IV (n=4), and Eu IV (n=5) using Hartree-Fock and configuration interaction
methods. To control the accuracy of our calculations we also performed similar
calculations for Pr III, Nd III and Sm III, for which experimental data are
available. The results are important, in particular, for physics of magnetic
garnets.Comment: 4 pages 1 tabl
Gap generation in the XXZ model in a transverse magnetic field
The ground state phase diagram of the 1D XXZ model in transverse magnetic
field is obtained. It consists of the gapped phases with different types of
long range order (LRO) and critical lines at which the gap and the LRO vanish.
Using scaling estimations and a mean-field approach as well as numerical
results we found critical indices of the gap and the LRO in the vicinity of all
critical lines.Comment: 4 pages, 1 figure, Late
Age regression from soft aligned face images using low computational resources
The initial step in most facial age estimation systems consists of accurately aligning a model to the output of a face detector (e.g. an Active Appearance Model). This fitting process is very expensive in terms of computational resources and prone to get stuck in local minima. This makes it impractical for analysing faces in resource limited computing devices. In this paper we build a face age regressor that is able to work directly on faces cropped using a state-of-the-art face detector. Our procedure uses K nearest neighbours (K-NN) regression with a metric based on a properly tuned Fisher Linear Discriminant Analysis (LDA) projection matrix. On FG-NET we achieve a state-of-the-art Mean Absolute Error (MAE) of 5.72 years with manually aligned faces. Using face images cropped by a face detector we get a MAE of 6.87 years in the same database. Moreover, most of the algorithms presented in the literature have been evaluated on single database experiments and therefore, they report optimistically biased results. In our cross-database experiments we get a MAE of roughly 12 years, which would be the expected performance in a real world application
Combined effect of coherent Z exchange and the hyperfine interaction in atomic PNC
The nuclear spin-dependent parity nonconserving (PNC) interaction arising
from a combination of the hyperfine interaction and the coherent,
spin-independent, PNC interaction from Z exchange is evaluated using many-body
perturbation theory. For the 6s-7s transition in 133Cs, we obtain a result that
is about 40% smaller than that found previously by Bouchiat and Piketty [Phys.
Lett. B 269, 195 (1991)]. Applying this result to 133Cs, leads to an increase
in the experimental value of nuclear anapole moment and exacerbates differences
between constraints on PNC meson coupling constants obtained from the Cs
anapole moment and those obtained from other nuclear parity violating
experiments. Nuclear spin-dependent PNC dipole matrix elements, including
contributions from the combined weak-hyperfine interaction, are also given for
the 7s-8s transition in 211Fr and for transitions between ground-state
hyperfine levels in K, Rb, Cs, Ba+, Au, Tl, Fr, and Ra+.Comment: Revtex4 preprint 19 pages 4 table
Combined CI+MBPT calculations of energy levels and transition amplitudes in Be, Mg, Ca, and Sr
Configuration interaction (CI) calculations in atoms with two valence
electrons, carried out in the V(N-2) Hartree-Fock potential of the core, are
corrected for core-valence interactions using many-body perturbation theory
(MBPT). Two variants of the mixed CI+MBPT theory are described and applied to
obtain energy levels and transition amplitudes for Be, Mg, Ca, and Sr
- …
