1,710 research outputs found
Phase Transitions in Quantum Dots
We perform Hartree-Fock calculations to show that quantum dots (i.e. two
dimensional systems of up to twenty interacting electrons in an external
parabolic potential) undergo a gradual transition to a spin-polarized Wigner
crystal with increasing magnetic field strength. The phase diagram and ground
state energies have been determined. We tried to improve the ground state of
the Wigner crystal by introducing a Jastrow ansatz for the wavefunction and
performing a variational Monte Carlo calculation. The existence of so called
magic numbers was also investigated. Finally, we also calculated the heat
capacity associated with the rotational degree of freedom of deformed many-body
states.Comment: 14 pages, 7 postscript figure
New Insights into Uniformly Accelerated Detector in a Quantum Field
We obtained an exact solution for a uniformly accelerated Unruh-DeWitt
detector interacting with a massless scalar field in (3+1) dimensions which
enables us to study the entire evolution of the total system, from the initial
transient to late-time steady state. We find that the Unruh effect as derived
from time-dependent perturbation theory is valid only in the transient stage
and is totally invalid for cases with proper acceleration smaller than the
damping constant. We also found that, unlike in (1+1)D results, the (3+1)D
uniformly accelerated Unruh-DeWitt detector in a steady state does emit a
positive radiated power of quantum nature at late-times, but it is not
connected to the thermal radiance experienced by the detector in the Unruh
effect proper.Comment: 6 pages, invited talk given by SYL at the conference of International
Association for Relativistic Dynamics (IARD), June 2006, Storrs, Connecticut,
US
An observation of spin-valve effects in a semiconductor field effect transistor: a novel spintronic device
We present the first spintronic semiconductor field effect transistor.
The injector and collector contacts of this device were made from magnetic
permalloy thin films with different coercive fields so that they could be
magnetized either parallel or antiparallel to each other in different applied
magnetic fields. The conducting medium was a two dimensional electron gas
(2DEG) formed in an AlSb/InAs quantum well.
Data from this device suggest that its resistance is controlled by two
different types of spin-valve effect: the first occurring at the
ferromagnet-2DEG interfaces; and the second occuring in direct propagation
between contacts.Comment: 4 pages, 2 figure
On the nature of the short duration GRB 050906
The definitive version is available at www.blackwell-synergy.com. Copyright Blackwell Publishing DOI : 10.1111/j.1365-2966.2007.11953.xPeer reviewe
Local Charge Excesses in Metallic Alloys: a Local Field Coherent Potential Approximation Theory
Electronic structure calculations performed on very large supercells have
shown that the local charge excesses in metallic alloys are related through
simple linear relations to the local electrostatic field resulting from
distribution of charges in the whole crystal.
By including local external fields in the single site Coherent Potential
Approximation theory, we develop a novel theoretical scheme in which the local
charge excesses for random alloys can be obtained as the responses to local
external fields. Our model maintains all the computational advantages of a
single site theory but allows for full charge relaxation at the impurity sites.
Through applications to CuPd and CuZn alloys, we find that, as a general rule,
non linear charge rearrangements occur at the impurity site as a consequence of
the complex phenomena related with the electronic screening of the external
potential. This nothwithstanding, we observe that linear relations hold between
charge excesses and external potentials, in quantitative agreement with the
mentioned supercell calculations, and well beyond the limits of linearity for
any other site property.Comment: 11 pages, 1 table, 7 figure
Current and Spin-Torque in Double Tunnel Barrier Ferromagnet - Superconductor - Ferromagnet Systems
We calculate the current and the spin-torque in small symmetric double tunnel
barrier ferromagnet - superconductor - ferromagnet (F-S-F) systems.
Spin-accumulation on the superconductor governs the transport properties when
the spin-flip relaxation time is longer than the transport dwell time. In the
elastic transport regime, it is demonstrated that the relative change in the
current (spin-torque) for F-S-F systems equals the relative change in the
current (spin-torque) for F-N-F systems upon changing the relative
magnetization direction of the two ferromagnets. This differs from the results
in the inelastic transport regime where spin-accumulation suppresses the
superconducting gap and dramatically changes the magnetoresistance [S.
Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999)]. The
experimental relevance of the elastic and inelastic transport regimes,
respectively, as well as the reasons for the change in the transport properties
are discussed.Comment: 7 page
Paraxial propagation of a quantum charge in a random magnetic field
The paraxial (parabolic) theory of a near forward scattering of a quantum
charged particle by a static magnetic field is presented. From the paraxial
solution to the Aharonov-Bohm scattering problem the transverse transfered
momentum (the Lorentz force) is found. Multiple magnetic scattering is
considered for two models: (i) Gaussian -correlated random magnetic
field; (ii) a random array of the Aharonov-Bohm magnetic flux line. The
paraxial gauge-invariant two-particle Green function averaged with respect to
the random field is found by an exact evaluation of the Feynman integral. It is
shown that in spite of the anomalous character of the forward scattering, the
transport properties can be described by the Boltzmann equation. The Landau
quantization in the field of the Aharonov-Bohm lines is discussed.Comment: Figures and references added. Many typos corrected. RevTex, 25 pages,
9 figure
Screened Coulomb interactions in metallic alloys: I. Universal screening in the atomic sphere approximation
We have used the locally self-consistent Green's function (LSGF) method in
supercell calculations to establish the distribution of the net charges
assigned to the atomic spheres of the alloy components in metallic alloys with
different compositions and degrees of order. This allows us to determine the
Madelung potential energy of a random alloy in the single-site mean field
approximation which makes the conventional single-site density-functional-
theory coherent potential approximation (SS-DFT-CPA) method practically
identical to the supercell LSGF method with a single-site local interaction
zone that yields an exact solution of the DFT problem. We demonstrate that the
basic mechanism which governs the charge distribution is the screening of the
net charges of the alloy components that makes the direct Coulomb interactions
short-ranged. In the atomic sphere approximation, this screening appears to be
almost independent of the alloy composition, lattice spacing, and crystal
structure. A formalism which allows a consistent treatment of the screened
Coulomb interactions within the single-site mean-filed approximation is
outlined. We also derive the contribution of the screened Coulomb interactions
to the S2 formalism and the generalized perturbation method.Comment: 28 pages, 8 figure
- …