33,460 research outputs found

    Near-field angular distributions of high velocity ions for low-power hall thrusters

    Get PDF
    Experimental angular distributions of high-energy primary ions in the near-field region of a small Hall thruster between 50-200 mm downstream of the thruster exit plane at a range of centerline angles have been determined using a highly-collimated, energy-selective diagnostic probe. The measurements reveal a wide angular distribution of ions exiting the thruster channel and the formation of a strong, axially-directed jet of ions along the thruster centerline. Comparisons are made to other experimental determinations as applicable

    Sputtering yield measurements at glancing incidence using a quartz crystal microbalance

    Get PDF
    Low energy sputtering yields at grazing incidence have been investigated experimentally using a quartz crystal microbalance (QCM) technique. This method involved precoating the QCM with a thin film of the desired target material and relating the resonance frequency shift directly to mass loss during ion bombardment. A highly focused, low divergence ion beam provided a well defined incidence angle. Focusing most of the ion current on the center of the target allowed for higher sensitivity by taking into account the radial mass sensitivity of the QCM. Measurements of Mo, Cu, and W sputtering yields were taken for low energy (80–1000 eV) Xe+ and Ar+ to validate this experimental method. The target films ranged from 3.5 to 8.0 ”m in thickness and were deposited so that their crystal structure and density would match those of the bulk material as closely as possible. These properties were characterized using a combination of scanning electron microscope imagery, profilometry, and x-ray diffraction. At normal incidence, the sputtering yields demonstrated satisfactory agreement with previously published work. At angles of incidence up to 40° off normal, the data agreed well with predictions from existing theoretical models. Sputtering yields were found to increase by a factor of 1.6 over this range. The optimum angle for sputtering occurred at 55°, after which the yields rapidly decreased. Measurements were taken up to 80° from the surface normal

    Diode laser 87Rb optical pumping in an evacuated wall-coated cell

    Get PDF
    The evacuated wall coated sealed cell coupled with diode laser optical pumping offers a number of attractive potential advantages for use in Rb or Cs atomic frequency standards. An investigation of systematic effects is required to explore possible limitations of the technique. The use of diode laser optical pumping of 87 Rb in an evacuated wall coated sealed cell is presented. Experimental results/discussion to be presented include the signal strength and line broadening of the 0 - 0 hyperfine resonance as a function of light intensity for the D1 optical transitions (F - F prime) - (2 1 prime) and (2 - 2 prime), shift of the 0 - 0 hyperfine frequency as a function of laser intensity and de-tuning from optical resonance, and diode laser frequency stabilization techniques

    Improved Bounds on Information Dissemination by Manhattan Random Waypoint Model

    Full text link
    With the popularity of portable wireless devices it is important to model and predict how information or contagions spread by natural human mobility -- for understanding the spreading of deadly infectious diseases and for improving delay tolerant communication schemes. Formally, we model this problem by considering MM moving agents, where each agent initially carries a \emph{distinct} bit of information. When two agents are at the same location or in close proximity to one another, they share all their information with each other. We would like to know the time it takes until all bits of information reach all agents, called the \textit{flood time}, and how it depends on the way agents move, the size and shape of the network and the number of agents moving in the network. We provide rigorous analysis for the \MRWP model (which takes paths with minimum number of turns), a convenient model used previously to analyze mobile agents, and find that with high probability the flood time is bounded by O(Nlog⁡M⌈(N/M)log⁡(NM)⌉)O\big(N\log M\lceil(N/M) \log(NM)\rceil\big), where MM agents move on an N×NN\times N grid. In addition to extensive simulations, we use a data set of taxi trajectories to show that our method can successfully predict flood times in both experimental settings and the real world.Comment: 10 pages, ACM SIGSPATIAL 2018, Seattle, U

    Nonlinear preferential rewiring in fixed-size networks as a diffusion process

    Full text link
    We present an evolving network model in which the total numbers of nodes and edges are conserved, but in which edges are continuously rewired according to nonlinear preferential detachment and reattachment. Assuming power-law kernels with exponents alpha and beta, the stationary states the degree distributions evolve towards exhibit a second order phase transition - from relatively homogeneous to highly heterogeneous (with the emergence of starlike structures) at alpha = beta. Temporal evolution of the distribution in this critical regime is shown to follow a nonlinear diffusion equation, arriving at either pure or mixed power-laws, of exponents -alpha and 1-alpha

    Noncontact modulation calorimetry of metallic liquids in low Earth orbit

    Get PDF
    Noncontact modulation calorimetry using electromagnetic heating and radiative heat loss under ultrahigh-vacuum conditions has been applied to levitated solid, liquid, and metastable liquid samples. This experiment requires a reduced gravity environment over an extended period of time and allows the measurement of several thermophysical properties, such as the enthalpy of fusion and crystallization, specific heat, total hemispherical emissivity, and effective thermal conductivity with high precision as a function of temperature. From the results on eutectic glass forming Zr-based alloys thermodynamic functions are obtained which describe the glass-forming ability of these alloys

    Biochemical Properties of a Decoy Oligodeoxynucleotide Inhibitor of STAT3 Transcription Factor.

    Get PDF
    Cyclic STAT3 decoy (CS3D) is a second-generation, double-stranded oligodeoxynucleotide (ODN) that mimics a genomic response element for signal transducer and activator of transcription 3 (STAT3), an oncogenic transcription factor. CS3D competitively inhibits STAT3 binding to target gene promoters, resulting in decreased expression of proteins that promote cellular proliferation and survival. Previous studies have demonstrated antitumor activity of CS3D in preclinical models of solid tumors. However, prior to entering human clinical trials, the efficiency of generating the CS3D molecule and its stability in biological fluids should be determined. CS3D is synthesized as a single-stranded ODN and must have its free ends ligated to generate the final cyclic form. In this study, we report a ligation efficiency of nearly 95 percent. The ligated CS3D demonstrated a half-life of 7.9 h in human serum, indicating adequate stability for intravenous delivery. These results provide requisite biochemical characterization of CS3D that will inform upcoming clinical trials

    Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities

    Get PDF
    The quality factors of modes in nearly identical GaAs and Al_{0.18}Ga_{0.82}As microdisks are tracked over three wavelength ranges centered at 980 nm, 1460 nm, and 1600 nm, with quality factors measured as high as 6.62x10^5 in the 1600-nm band. After accounting for surface scattering, the remaining loss is due to sub-bandgap absorption in the bulk and on the surfaces. We observe the absorption is, on average, 80 percent greater in AlGaAs than in GaAs and in both materials is 540 percent higher at 980 nm than at 1600nm.Comment: 4 pages, 2 figures, 1 table, minor changes to disucssion of Qrad and Urbach tai

    Robust topology optimization of three-dimensional photonic-crystal band-gap structures

    Get PDF
    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniques such as a simple approach to impose symmetry constraints. We also demonstrate a technique for \emph{robust} topology optimization, in which some uncertainty is included in each voxel and we optimize the worst-case gap, and we show that the resulting band gaps have increased robustness to systematic fabrication errors.Comment: 17 pages, 9 figures, submitted to Optics Expres

    A novel boundary element method using surface conductive absorbers for full-wave analysis of 3-D nanophotonics

    Full text link
    Fast surface integral equation (SIE) solvers seem to be ideal approaches for simulating 3-D nanophotonic devices, as these devices generate fields both in an interior channel and in the infinite exterior domain. However, many devices of interest, such as optical couplers, have channels that can not be terminated without generating reflections. Generating absorbers for these channels is a new problem for SIE methods, as the methods were initially developed for problems with finite surfaces. In this paper we show that the obvious approach for eliminating reflections, making the channel mildly conductive outside the domain of interest, is inaccurate. We describe a new method, in which the absorber has a gradually increasing surface conductivity; such an absorber can be easily incorporated in fast integral equation solvers. Numerical experiments from a surface-conductivity modified FFT-accelerated PMCHW-based solver are correlated with analytic results, demonstrating that this new method is orders of magnitude more effective than a volume absorber, and that the smoothness of the surface conductivity function determines the performance of the absorber. In particular, we show that the magnitude of the transition reflection is proportional to 1/L^(2d+2), where L is the absorber length and d is the order of the differentiability of the surface conductivity function.Comment: 10 page
    • 

    corecore