With the popularity of portable wireless devices it is important to model and
predict how information or contagions spread by natural human mobility -- for
understanding the spreading of deadly infectious diseases and for improving
delay tolerant communication schemes. Formally, we model this problem by
considering M moving agents, where each agent initially carries a
\emph{distinct} bit of information. When two agents are at the same location or
in close proximity to one another, they share all their information with each
other. We would like to know the time it takes until all bits of information
reach all agents, called the \textit{flood time}, and how it depends on the way
agents move, the size and shape of the network and the number of agents moving
in the network.
We provide rigorous analysis for the \MRWP model (which takes paths with
minimum number of turns), a convenient model used previously to analyze mobile
agents, and find that with high probability the flood time is bounded by
O(NlogM⌈(N/M)log(NM)⌉), where M agents move on an
N×N grid. In addition to extensive simulations, we use a data set of
taxi trajectories to show that our method can successfully predict flood times
in both experimental settings and the real world.Comment: 10 pages, ACM SIGSPATIAL 2018, Seattle, U