1,436 research outputs found

    A lunar far-side very low frequency array

    Get PDF
    Papers were presented to consider very low frequency (VLF) radio astronomical observations from the moon. In part 1, the environment in which a lunar VLF radio array would function is described. Part 2 is a review of previous and proposed low-frequency observatories. The science that could be conducted with a lunar VLF array is described in part 3. The design of a lunar VLF array and site selection criteria are considered, respectively, in parts 4 and 5. Part 6 is a proposal for precursor lunar VLF observations. Finally, part 7 is a summary and statement of conclusions, with suggestions for future science and engineering studies. The workshop concluded with a general consensus on the scientific goals and preliminary design for a lunar VLF array

    An artificially generated atmosphere near a lunar base

    Get PDF
    We discuss the formation of an artificial atmosphere generated by vigorous lunar base activity in this paper. We developed an analytical, steady-state model for a lunar atmosphere based upon previous investigations of the Moon's atmosphere from Apollo. Constant gas-injection rates, ballistic trajectories, and a Maxwellian particle distribution for an oxygen-like gas are assumed. Even for the extreme case of continuous He-3 mining of the lunar regolith, we find that the lunar atmosphere would not significantly degrade astronomical observations beyond about 10 km from the mining operation

    Coherence in a transmon qubit with epitaxial tunnel junctions

    Full text link
    We developed transmon qubits based on epitaxial tunnel junctions and interdigitated capacitors. This multileveled qubit, patterned by use of all-optical lithography, is a step towards scalable qubits with a high integration density. The relaxation time T1 is .72-.86mu sec and the ensemble dephasing time T2 is slightly larger than T1. The dephasing time T2 (1.36mu sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker level splitting than observed in qubits with amorphous barriers in equivalent-size junctions. The qubit's inferred microwave loss closely matches the weighted losses of the individual elements (junction, wiring dielectric, and interdigitated capacitor), determined by independent resonator measurements

    Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To

    Get PDF
    The combination of highly efficient polymerizations with modular "click" coupling reactions has enabled the synthesis of a wide variety of novel nanoscopic tructures. Here we demonstrate the facile synthesis of a new class of clickable, branched nanostructures, polyethylene glycol (PEG)-branch-azide bivalent-brush polymers, facilitated by "graft-through" ring-opening metathesis polymerization of a branched norbornene-PEG-chloride macromonomer followed by halide-azide exchange. The resulting bivalent-brush polymers possess azide groups at the core near a polynorbornene backbone with PEG chains extended into solution; the structure resembles a unimolecular micelle. We demonstrate copper-catalyzed azide-alkre cycloaddition (CuAAC) "click-to" coupling of a photocleavable doxorubicin (DOX)-alkyne derivative to the azide core. The CuAAC coupling was quantitative across a wide range of nanoscopic sizes (similar to 6-similar to 50 nrn); UV photolysis of the resulting DOX-loaded materials yielded free DOX that was therapeutically effective against human cancer cells

    Toward a Mixed-Methods Research Approach to Content Analysis in The Digital Age: The Combined Content-Analysis Model and its Applications to Health Care Twitter Feeds

    Get PDF
    BACKGROUND: Twitter’s 140-character microblog posts are increasingly used to access information and facilitate discussions among health care professionals and between patients with chronic conditions and their caregivers. Recently, efforts have emerged to investigate the content of health care-related posts on Twitter. This marks a new area for researchers to investigate and apply content analysis (CA). In current infodemiology, infoveillance and digital disease detection research initiatives, quantitative and qualitative Twitter data are often combined, and there are no clear guidelines for researchers to follow when collecting and evaluating Twitter-driven content. OBJECTIVE: The aim of this study was to identify studies on health care and social media that used Twitter feeds as a primary data source and CA as an analysis technique. We evaluated the resulting 18 studies based on a narrative review of previous methodological studies and textbooks to determine the criteria and main features of quantitative and qualitative CA. We then used the key features of CA and mixed-methods research designs to propose the combined content-analysis (CCA) model as a solid research framework for designing, conducting, and evaluating investigations of Twitter-driven content. METHODS: We conducted a PubMed search to collect studies published between 2010 and 2014 that used CA to analyze health care-related tweets. The PubMed search and reference list checks of selected papers identified 21 papers. We excluded 3 papers and further analyzed 18. RESULTS: Results suggest that the methods used in these studies were not purely quantitative or qualitative, and the mixed-methods design was not explicitly chosen for data collection and analysis. A solid research framework is needed for researchers who intend to analyze Twitter data through the use of CA. CONCLUSIONS: We propose the CCA model as a useful framework that provides a straightforward approach to guide Twitter-driven studies and that adds rigor to health care social media investigations. We provide suggestions for the use of the CCA model in elder care-related contexts

    Artemin Is a Vascular-Derived Neurotropic Factor for Developing Sympathetic Neurons

    Get PDF
    AbstractArtemin (ARTN) is a member of the GDNF family of ligands and signals through the Ret/GFRα3 receptor complex. Characterization of ARTN- and GFRα3-deficient mice revealed similar abnormalities in the migration and axonal projection pattern of the entire sympathetic nervous system. This resulted in abnormal innervation of target tissues and consequent cell death due to deficiencies of target-derived neurotrophic support. ARTN is expressed along blood vessels and in cells nearby to sympathetic axonal projections. In the developing vasculature, ARTN is expressed in smooth muscle cells of the vessels, and it acts as a guidance factor that encourages sympathetic fibers to follow blood vessels as they project toward their final target tissues. The chemoattractive properties of ARTN were confirmed by the demonstration that sympathetic neuroblasts migrate and project axons toward ARTN-soaked beads implanted into mouse embryos

    SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo

    Get PDF
    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work

    Isokinetic Peak Torque in Young Wrestlers

    Get PDF
    This is the publisher's version, also found at http://ehis.ebscohost.com/ehost/detail?vid=3&sid=34ab1967-2aea-457b-b261-e90e7b05e38c%40sessionmgr11&hid=2&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=s3h&AN=20752369The purpose of the present study was to examine age-related changes in isokinetic leg flexion and extension peak torque (PT), PT/body weight (PT/ BW), and F*T/fat-free weight (PT/FFW) in young wrestlers. Male wrestlers (A^ = 108; age M ± SD = 11.3 + 1.5 years) volunteered to be measured for peak torque at 30, 180, and 300° • s'. In addition, underwater weighing was performed to determine body composition characteristics. The sample was divided into six age groups (8.1-8.9, n = 10; 9.0-9.9, n= 11; 10.0-10.9, n = 25; 11.0-11.9, n = 22; 12.0-12.9, n = 28; 13.0-13.9, n= 12), and repeated measures ANOVAs with Tukey post hoc comparisons showed increases across age for PT, PT/BW, and PT/FFW. The results of this study indicated that there were age-related increases in peak torque that could not be accounted for by changes in BW or FFW. It is possible that either an increase in muscle mass per unit of FFW, neural maturation, or both, contributes to the increase in strength across age in young male athletes
    • …
    corecore