24 research outputs found
Predicting clinical diagnosis in Huntington's disease: An imaging polymarker.
OBJECTIVE: Huntington's disease (HD) gene carriers can be identified before clinical diagnosis; however, statistical models for predicting when overt motor symptoms will manifest are too imprecise to be useful at the level of the individual. Perfecting this prediction is integral to the search for disease modifying therapies. This study aimed to identify an imaging marker capable of reliably predicting real-life clinical diagnosis in HD. METHOD: A multivariate machine learning approach was applied to resting-state and structural magnetic resonance imaging scans from 19 premanifest HD gene carriers (preHD, 8 of whom developed clinical disease in the 5 years postscanning) and 21 healthy controls. A classification model was developed using cross-group comparisons between preHD and controls, and within the preHD group in relation to "estimated" and "actual" proximity to disease onset. Imaging measures were modeled individually, and combined, and permutation modeling robustly tested classification accuracy. RESULTS: Classification performance for preHDs versus controls was greatest when all measures were combined. The resulting polymarker predicted converters with high accuracy, including those who were not expected to manifest in that time scale based on the currently adopted statistical models. INTERPRETATION: We propose that a holistic multivariate machine learning treatment of brain abnormalities in the premanifest phase can be used to accurately identify those patients within 5 years of developing motor features of HD, with implications for prognostication and preclinical trials. Ann Neurol 2018;83:532-543.SLM is funded by a National Institute for Health Research (NIHR) Translational Research Collaboration for Rare Diseases fellowship. This research has been funded/supported by the National Institute for Health Research Rare Diseases Translational Research Collaboration (NIHR RD-TRC). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.
RAB is funded by the NIHR Cambridge Biomedical Research Centre and the Cambridge University NHS Foundation Trust.
RED is employed on an EC Marie-Curie CIG, awarded to AH,
SJT, EJ and RS receive funding from a Wellcome Collaborative Award (200181/Z/15/Z
Longitudinal evaluation of proton magnetic resonance spectroscopy metabolites as biomarkers in Huntington鈥檚 disease
Proton Magnetic resonance spectroscopy (1H-MRS) is a non-invasive method of exploring cerebral metabolism. In Huntington鈥檚 disease, altered 1H-MRS-determined concentrations of several metabolites have been described; however, findings are often discrepant and longitudinal studies are lacking. 1H-MRS metabolites may represent a source of biomarkers, thus their relationship with established markers of disease progression require further exploration to assess prognostic value and elucidate pathways associated with neurodegeneration. In a prospective single-site controlled cohort study with standardised collection of CSF, blood, phenotypic and volumetric imaging data, we used 3T 1H-MRS in conjunction with the linear combination of model spectra method to quantify seven metabolites (total n-acetylaspartate, total creatine, total choline, myo-inositol, GABA, glutamate and glutathione) in the putamen of 59 participants at baseline (15 healthy controls, 15 premanifest and 29 manifest Huntington鈥檚 disease gene expansion carriers) and 48 participants at 2-year follow-up (12 healthy controls, 13 premanifest and 23 manifest Huntington鈥檚 disease gene expansion carriers). Intergroup differences in concentration and associations with CSF and plasma biomarkers; including neurofilament light chain and mutant Huntingtin, volumetric imaging markers; namely whole brain, caudate, grey matter and white matter volume, measures of disease progression and cognitive decline, were assessed cross-sectionally using generalized linear models and partial correlation. We report no significant groupwise differences in metabolite concentration at baseline but found total creatine and total n-acetylaspartate to be significantly reduced in manifest compared with premanifest participants at follow-up. Additionally, total creatine and myo-inositol displayed significant associations with reduced caudate volume across both time points in gene expansion carriers. Although relationships were observed between 1H-MRS metabolites and biofluid measures, these were not consistent across time points. To further assess prognostic value, we examined whether baseline 1H-MRS values, or rate of change, predicted subsequent change in established measures of disease progression. Several associations were found but were inconsistent across known indicators of disease progression. Finally, longitudinal mixed effects models revealed glutamine + glutamate to display a slow linear decrease over time in gene expansion carriers. Altogether, our findings show some evidence of reduced total n-acetylaspartate and total creatine as the disease progresses and cross-sectional associations between select metabolites, namely total creatine and myo-inositol, and markers of disease progression, potentially highlighting the proposed roles of neuroinflammation and metabolic dysfunction in disease pathogenesis. However, the absence of consistent group differences, inconsistency between baseline and follow-up, and lack of clear longitudinal change suggests that 1H-MRS metabolites have limited potential as Huntington鈥檚 disease biomarkers
Intellectual enrichment and genetic modifiers of cognition and brain volume in Huntington鈥檚 disease
An important step towards the development of treatments for cognitive impairment in ageing and neurodegenerative diseases is to identify genetic and environmental modifiers of cognitive function and understand the mechanism by which they exert an effect. In Huntington鈥檚 disease, the most common autosomal dominant dementia, a small number of studies have identified intellectual enrichment, i.e. a cognitively stimulating lifestyle, and genetic polymorphisms as potential modifiers of cognitive function. The aim of our study was to further investigate the relationship and interaction between genetic factors and intellectual enrichment on cognitive function and brain atrophy in Huntington鈥檚 disease. For this purpose, we analysed data from Track-HD, a multi-centre longitudinal study in Huntington鈥檚 disease gene-carriers, and focused on the role of intellectual enrichment (estimated at baseline) and the genes FAN1, MSH3, BDNF, COMT and MAPT in predicting cognitive decline and brain atrophy. We found that carrying the 3a allele in the MSH3 gene had a positive effect on global cognitive function and brain atrophy in multiple cortical regions, such that 3a allele carriers had a slower rate of cognitive decline and atrophy compared to non-carriers, in agreement with its role in somatic instability. No other genetic predictor had a significant effect on cognitive function and the effect of MSH3 was independent of intellectual enrichment. Intellectual enrichment also had a positive effect on cognitive function; participants with higher intellectual enrichment, ie. those who were better educated, had higher verbal intelligence and performed an occupation that was intellectually engaging, had better cognitive function overall, in agreement with previous studies in Huntington鈥檚 disease and other dementias. We also found that intellectual enrichment interacted with the BDNF gene, such that the positive effect of intellectual enrichment was greater in Met66 allele carriers than non-carriers. A similar relationship was also identified for changes in whole brain and caudate volume; the positive effect of intellectual enrichment was greater for Met66 allele carriers, rather than non-carriers. In summary, our study provides additional evidence for the beneficial role of intellectual enrichment and carrying the 3a allele in MSH3 in cognitive function in Huntington鈥檚 disease and their effect on brain structure
Fronto-striatal circuits for cognitive flexibility in far from onset Huntington's disease: evidence from the Young Adult Study.
OBJECTIVES: Cognitive flexibility, which is key for adaptive decision-making, engages prefrontal cortex (PFC)-striatal circuitry and is impaired in both manifest and premanifest Huntington's disease (pre-HD). The aim of this study was to examine cognitive flexibility in a far from onset pre-HD cohort to determine whether an early impairment exists and if so, whether fronto-striatal circuits were associated with this deficit. METHODS: In the present study, we examined performance of 51 pre-HD participants (mean age=29.22 (SD=5.71) years) from the HD Young Adult Study cohort and 53 controls matched for age, sex and IQ, on the Cambridge Neuropsychological Test Automated Battery (CANTAB) Intra-Extra Dimensional Set-Shift (IED) task. This cohort is unique as it is the furthest from disease onset comprehensively studied to date (mean years=23.89 (SD=5.96) years). The IED task measures visual discrimination learning, cognitive flexibility and specifically attentional set-shifting. We used resting-state functional MRI to examine whether the functional connectivity between specific fronto-striatal circuits was dysfunctional in pre-HD, compared with controls, and whether these circuits were associated with performance on the critical extradimensional shift stage. RESULTS: Our results demonstrated that the CANTAB IED task detects a mild early impairment in cognitive flexibility in a pre-HD group far from onset. Attentional set-shifting was significantly related to functional connectivity between the ventrolateral PFC and ventral striatum in healthy controls and to functional connectivity between the dorsolateral PFC and caudate in pre-HD participants. CONCLUSION: We postulate that this incipient impairment of cognitive flexibility may be associated with intrinsically abnormal functional connectivity of fronto-striatal circuitry in pre-HD
Visuospatial Processing Deficits Linked to Posterior Brain Regions in Premanifest and Early Stage Huntington's Disease.
OBJECTIVES: Visuospatial processing deficits have been reported in Huntington's disease (HD). To date, no study has examined associations between visuospatial cognition and posterior brain findings in HD. METHODS: We compared 119 premanifest (55> and 64<10.8 years to expected disease onset) and 104 early symptomatic (59 stage-1 and 45 stage-2) gene carriers, with 110 controls on visual search and mental rotation performance at baseline and 12 months. In the disease groups, we also examined associations between task performance and disease severity, functional capacity and structural brain measures. RESULTS: Cross-sectionally, there were strong differences between all disease groups and controls on visual search, and between diagnosed groups and controls on mental rotation accuracy. Only the premanifest participants close to onset took longer than controls to respond correctly to mental rotation. Visual search negatively correlated with disease burden and motor symptoms in diagnosed individuals, and positively correlated with functional capacity. Mental rotation ("same") was negatively correlated with motor symptoms in stage-2 individuals, and positively correlated with functional capacity. Visual search and mental rotation were associated with parieto-occipital (pre-/cuneus, calcarine, lingual) and temporal (posterior fusiform) volume and cortical thickness. Longitudinally, visual search deteriorated over 12 months in stage-2 individuals, with no evidence of declines in mental rotation. CONCLUSIONS: Our findings provide evidence linking early visuospatial deficits to functioning and posterior cortical dysfunction in HD. The findings are important since large research efforts have focused on fronto-striatal mediated cognitive changes, with little attention given to aspects of cognition outside of these areas. (JINS, 2016, 22, 595-608)
Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult Study (HD-YAS): a cross-sectional analysis.
BACKGROUND: Disease-modifying treatments are in development for Huntington's disease; crucial to their success is to identify a timepoint in a patient's life when there is a measurable biomarker of early neurodegeneration while clinical function is still intact. We aimed to identify this timepoint in a novel cohort of young adult premanifest Huntington's disease gene carriers (preHD) far from predicted clinical symptom onset. METHODS: We did the Huntington's disease Young Adult Study (HD-YAS) in the UK. We recruited young adults with preHD and controls matched for age, education, and sex to ensure each group had at least 60 participants with imaging data, accounting for scan fails. Controls either had a family history of Huntington's disease but a negative genetic test, or no known family history of Huntington's disease. All participants underwent detailed neuropsychiatric and cognitive assessments, including tests from the Cambridge Neuropsychological Test Automated Battery and a battery assessing emotion, motivation, impulsivity and social cognition (EMOTICOM). Imaging (done for all participants without contraindications) included volumetric MRI, diffusion imaging, and multiparametric mapping. Biofluid markers of neuronal health were examined using blood and CSF collection. We did a cross-sectional analysis using general least-squares linear models to assess group differences and associations with age and CAG length, relating to predicted years to clinical onset. Results were corrected for multiple comparisons using the false discovery rate (FDR), with FDR 0路16). CSF neurofilament light protein (NfL), plasma NfL, and CSF YKL-40 were elevated in this far-from-onset preHD cohort compared with controls (FDR<0路0001, =0路01, and =0路03, respectively). CSF NfL elevations were more likely in individuals closer to expected clinical onset (FDR <0路0001). INTERPRETATION: We report normal brain function yet a rise in sensitive measures of neurodegeneration in a preHD cohort approximately 24 years from predicted clinical onset. CSF NfL appears to be a more sensitive measure than plasma NfL to monitor disease progression. This preHD cohort is one of the earliest yet studied, and our findings could be used to inform decisions about when to initiate a potential future intervention to delay or prevent further neurodegeneration while function is intact. FUNDING: Wellcome Trust, CHDI Foundation
Intellectual enrichment and genetic modifiers of cognition and brain volume in Huntington's disease
An important step towards the development of treatments for cognitive impairment in ageing and neurodegenerative diseases is to identify genetic and environmental modifiers of cognitive function and understand the mechanism by which they exert an effect. In Huntington鈥檚 disease, the most common autosomal dominant dementia, a small number of studies have identified intellectual enrichment, i.e. a cognitively stimulating lifestyle and genetic polymorphisms as potential modifiers of cognitive function. The aim of our study was to further investigate the relationship and interaction between genetic factors and intellectual enrichment on cognitive function and brain atrophy in Huntington鈥檚 disease. For this purpose, we analysed data from Track-HD, a multi-centre longitudinal study in Huntington鈥檚 disease gene carriers and focused on the role of intellectual enrichment (estimated at baseline) and the genes FAN1, MSH3, BDNF, COMT and MAPT in predicting cognitive decline and brain atrophy. We found that carrying the 3a allele in the MSH3 gene had a positive effect on global cognitive function and brain atrophy in multiple cortical regions, such that 3a allele carriers had a slower rate of cognitive decline and atrophy compared with non-carriers, in agreement with its role in somatic instability. No other genetic predictor had a significant effect on cognitive function and the effect of MSH3 was independent of intellectual enrichment. Intellectual enrichment also had a positive effect on cognitive function; participants with higher intellectual enrichment, i.e. those who were better educated, had higher verbal intelligence and performed an occupation that was intellectually engaging, had better cognitive function overall, in agreement with previous studies in Huntington鈥檚 disease and other dementias. We also found that intellectual enrichment interacted with the BDNF gene, such that the positive effect of intellectual enrichment was greater in Met66 allele carriers than non-carriers. A similar relationship was also identified for changes in whole brain and caudate volume; the positive effect of intellectual enrichment was greater for Met66 allele carriers, rather than for non-carriers. In summary, our study provides additional evidence for the beneficial role of intellectual enrichment and carrying the 3a allele in MSH3 in cognitive function in Huntington鈥檚 disease and their effect on brain structure
Brain regions showing white matter loss in Huntington's Disease are enriched for synaptic and metabolic genes
Background The earliest white matter changes in Huntington鈥檚 disease are seen before disease onset in the premanifest stage around the striatum, within the corpus callosum, and in posterior white matter tracts. While experimental evidence suggests that these changes may be related to abnormal gene transcription, we lack an understanding of the biological processes driving this regional vulnerability. Methods Here, we investigate the relationship between regional transcription in the healthy brain, using the Allen Institute for Brain Science transcriptome atlas, and regional white matter connectivity loss at three time points over 24 months in subjects with premanifest Huntington鈥檚 disease relative to control participants. The baseline cohort included 72 premanifest Huntington鈥檚 disease participants and 85 healthy control participants. Results We show that loss of corticostriatal, interhemispheric, and intrahemispheric white matter connections at baseline and over 24 months in premanifest Huntington鈥檚 disease is associated with gene expression profiles enriched for synaptic genes and metabolic genes. Corticostriatal gene expression profiles are predominately associated with motor, parietal, and occipital regions, while interhemispheric expression profiles are associated with frontotemporal regions. We also show that genes with known abnormal transcription in human Huntington鈥檚 disease and animal models are overrepresented in synaptic gene expression profiles, but not in metabolic gene expression profiles. Conclusions These findings suggest a dual mechanism of white matter vulnerability in Huntington鈥檚 disease, in which abnormal transcription of synaptic genes and metabolic disturbance not related to transcription may drive white matter loss
Cerebrospinal fluid neurogranin and TREM2 in Huntington's disease
Abstract Biomarkers of Huntington鈥檚 disease (HD) in cerebrospinal fluid (CSF) could be of value in elucidating the biology of this genetic neurodegenerative disease, as well as in the development of novel therapeutics. Deranged synaptic and immune function have been reported in HD, and concentrations of the synaptic protein neurogranin and the microglial protein TREM2 are increased in other neurodegenerative diseases. We therefore used ELISAs to quantify neurogranin and TREM2 in CSF samples from HD mutation carriers and controls. CSF neurogranin concentration was not significantly altered in HD compared to controls, nor was it significantly associated with disease burden score, total functional capacity or motor score. An apparent increase in CSF TREM2 in manifest HD was determined to be due to increasing TREM2 with age. After age adjustment, there was no significant alteration of TREM2 in either HD group, nor any association with motor, functional or cognitive score, or brain volume quantified by MRI. Both analyses were well-powered, and sample size calculations indicated that several thousand samples per group would be needed to prove that disease-associated alterations do in fact exist. We conclude that neither neurogranin nor TREM2 is a useful biofluid biomarker for disease processes in Huntington鈥檚 disease