628 research outputs found

    Chapter 2 The APRU Sustainable Cities and Landscapes Hub

    Get PDF
    This handbook addresses a growing list of challenges faced by regions and cities in the Pacific;Rim, drawing connections around the what, why, and how questions that are fundamental;to sustainable development policies and planning practices. These include the connection;between cities and surrounding landscapes, across different boundaries and scales; the persistence;of environmental and development inequities; and the growing impacts of global;climate change, including how physical conditions and social implications are being anticipated;and addressed. Building upon localized knowledge and contextualized experiences,;this edited collection brings attention to place-;based;approaches across the Pacific Rim and;makes an important contribution to the scholarly and practical understanding of sustainable;urban development models that have mostly emerged out of the Western experiences. Nine;sections, each grounded in research, dialogue, and collaboration with practical examples and;analysis, focus on a theme or dimension that carries critical impacts on a holistic vision of city-;landscape;development, such as resilient communities, ecosystem services and biodiversity,;energy, water, health, and planning and engagement.;This international edited collection will appeal to academics and students engaged in;research involving landscape architecture, architecture, planning, public policy, law, urban;studies, geography, environmental science, and area studies. It also informs policy makers,;professionals, and advocates of actionable knowledge and adoptable ideas by connecting;those issues with the Sustainable Development Goals (SDGs);of the United Nations. The;collection of writings presented in this book speaks to multiyear collaboration of scholars;through the APRU Sustainable Cities and Landscapes (SCL);Program and its global network,;facilitated by SCL Annual Conferences and involving more than 100 contributors;from more than 30 institutions

    Chapter 2 The APRU Sustainable Cities and Landscapes Hub

    Get PDF
    This handbook addresses a growing list of challenges faced by regions and cities in the Pacific;Rim, drawing connections around the what, why, and how questions that are fundamental;to sustainable development policies and planning practices. These include the connection;between cities and surrounding landscapes, across different boundaries and scales; the persistence;of environmental and development inequities; and the growing impacts of global;climate change, including how physical conditions and social implications are being anticipated;and addressed. Building upon localized knowledge and contextualized experiences,;this edited collection brings attention to place-;based;approaches across the Pacific Rim and;makes an important contribution to the scholarly and practical understanding of sustainable;urban development models that have mostly emerged out of the Western experiences. Nine;sections, each grounded in research, dialogue, and collaboration with practical examples and;analysis, focus on a theme or dimension that carries critical impacts on a holistic vision of city-;landscape;development, such as resilient communities, ecosystem services and biodiversity,;energy, water, health, and planning and engagement.;This international edited collection will appeal to academics and students engaged in;research involving landscape architecture, architecture, planning, public policy, law, urban;studies, geography, environmental science, and area studies. It also informs policy makers,;professionals, and advocates of actionable knowledge and adoptable ideas by connecting;those issues with the Sustainable Development Goals (SDGs);of the United Nations. The;collection of writings presented in this book speaks to multiyear collaboration of scholars;through the APRU Sustainable Cities and Landscapes (SCL);Program and its global network,;facilitated by SCL Annual Conferences and involving more than 100 contributors;from more than 30 institutions

    Estimating and using information in inverse problems

    Full text link
    In inverse problems, one attempts to infer spatially variable functions from indirect measurements of a system. To practitioners of inverse problems, the concept of "information" is familiar when discussing key questions such as which parts of the function can be inferred accurately and which cannot. For example, it is generally understood that we can identify system parameters accurately only close to detectors, or along ray paths between sources and detectors, because we have "the most information" for these places. Although referenced in many publications, the "information" that is invoked in such contexts is not a well understood and clearly defined quantity. Herein, we present a definition of information density that is based on the variance of coefficients as derived from a Bayesian reformulation of the inverse problem. We then discuss three areas in which this information density can be useful in practical algorithms for the solution of inverse problems, and illustrate the usefulness in one of these areas -- how to choose the discretization mesh for the function to be reconstructed -- using numerical experiments

    The Consequential Role of Aesthetics in Forest Fuels Reduction Propensities: Diverse Landowners’ Attitudes and Responses to Project Types, Risks, Costs, and Habitat Benefits

    Get PDF
    Private landowners in the southern Willamette Valley of Oregon, USA were surveyed. The survey queried probabilities of implementing specific fuels reduction projects in extensive areas of specific forest types on their property. The projects were described in relation to the beginning and target forest types, the actions required, costs, and long-term maintenance. Forest types were first rated for scenic beauty and informed levels of wildfire risk reduction, scarce habitat production, and associated property rights risks. Propensities to perform each fuels reduction project were then obtained. These were adversely affected by disbelief in heightened wildfire risks or climate change, higher project costs, feelings of hopeless vulnerability to wildfire, and low aesthetic affections for target forests. Propensities were enhanced by aesthetic affection for target forests, belief in the efficaciousness of fuels reduction, previous experience with wildfire evacuation, and higher incomes. All landowners favored thinning of young conifer forests, but some were averse to thinning of mature conifer forests. Anthropocentric landowners, mainly farmers, foresters, and some small holders, tended to favor conventional thinnings toward commercially valuable conifer forests and avoided long-term habitat maintenance. Nature-centric landowners, mainly some rural residents and wealthy estate owners, leaned more toward long term habitat goals and oak forests

    Exploring and Testing Wildfire Risk Decision-Making in the Face of Deep Uncertainty

    Get PDF
    We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland– urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within the same scenario as stochastic elements in simulated wildfire, succession, and landowner decisions create large sets of unique, path-dependent futures for analysis. We applied the modeling system to an 815 km2 study area in western Oregon at a sub-taxlot parcel grain and annual timestep, generating hundreds of alternative futures for 2007–2056 (50 years) to explore how WUI communities facing compound risks from increasing wildfire and expanding periurban development can situate and assess alternative risk management approaches in their localized SES context. The ability to link trends and uncertainties across many futures to processes and events that unfold in individual futures is central to the modeling system. By contrasting selected alternative futures, we illustrate how assessing simulated feedbacks between wildfire and other SES processes can identify tradeoffs and leverage points in fire-prone WUI landscapes. Assessments include a detailed “post-mortem” of a rare, extreme wildfire event, and uncovered, unexpected stabilizing feedbacks from treatment costs that reduced the effectiveness of agent responses to signs of increasing risk

    Distribution of Breeding Shorebirds on the Arctic Coastal Plain of Alaska

    Get PDF
    Available information on the distribution of breeding shorebirds across the Arctic Coastal Plain of Alaska is dated, fragmented, and limited in scope. Herein, we describe the distribution of 19 shorebird species from data gathered at 407 study plots between 1998 and 2004. This information was collected using a single-visit rapid area search technique during territory establishment and early incubation periods, a time when social displays and vocalizations make the birds highly detectable. We describe the presence or absence of each species, as well as overall numbers of species, providing a regional perspective on shorebird distribution. We compare and contrast our shorebird distribution maps to those of prior studies and describe prominent patterns of shorebird distribution. Our examination of how shorebird distribution and numbers of species varied both latitudinally and longitudinally across the Arctic Coastal Plain of Alaska indicated that most shorebird species occur more frequently in the Beaufort Coastal Plain ecoregion (i.e., closer to the coast) than in the Brooks Foothills ecoregion (i.e., farther inland). Furthermore, the occurrence of several species indicated substantial longitudinal directionality. Species richness at surveyed sites was highest in the western portion of the Beaufort Coastal Plain ecoregion. The broad-scale distribution information we present here is valuable for evaluating potential effects of human development and climate change on Arctic-breeding shorebird populations.Les renseignements qui existent en matière de répartition des oiseaux de rivage en reproduction sur la plaine côtière de l’Arctique en Alaska sont anciens, fragmentés et restreints. Ici, nous décrivons la répartition de 19 espèces d’oiseaux de rivage à partir de données recueillies à 407 lieux de recherche entre 1998 et 2004. Cette information a été recueillie grâce à une technique de recherche consistant en une seule visite rapide durant les périodes d’établissement du territoire et de début d’incubation, périodes pendant lesquelles les comportements sociaux et les vocalisations permettent de bien repérer les oiseaux. Nous décrivons la présence ou l’absence de chaque espèce, de même que le nombre général d’espèces, ce qui procure une perspective régionale de la répartition des oiseaux de rivage. Nous comparons et contrastons nos cartes de répartition des oiseaux de rivage à celles d’études antérieures, en plus de décrire les tendances les plus marquées en matière de répartition des oiseaux de rivage. Notre examen de la variation latitudinale et longitudinale en matière de répartition et de nombre d’espèces d’oiseaux de rivage à l’échelle de la plaine côtière arctique de l’Alaska nous a permis de constater que la plupart des espèces d’oiseaux de rivage se manifestaient plus souvent dans la région écologique de la plaine côtière de Beaufort (c’est-à-dire plus proche de la côte) que dans la région écologique des contreforts de Brooks (c’est-à-dire plus à l’intérieur des terres). Par ailleurs, l’occurrence de plusieurs espèces indiquait une directionalité longitudinale substantielle. La richesse des espèces aux sites à l’étude était à son meilleur dans la partie ouest de la région écologique de la plaine côtière de Beaufort. Les renseignements sur la répartition à grande échelle que nous présentons ici jouent un rôle dans l’évaluation des effets éventuels des travaux de mise en valeur par l’être humain et du changement climatique sur les populations d’oiseaux de rivage en reproduction de l’Arctique

    A novel topographic parameterization scheme indicates that martian gullies display the signature of liquid water

    Get PDF
    Martian gullies resemble gullies carved by water on Earth, yet are thought to have formed in an extremely cold (2-driven processes. That this argument persists demonstrates the limitations of morphological interpretations made from 2D images, especially when similar-looking landforms can form by very different processes. To overcome this we have devised a parameterization scheme, based on statistical discriminant analysis and hydrological terrain analysis of meter-scale digital topography data, which can distinguish between dry and wet surface processes acting on a landscape. Applying this approach to new meter-scale topographic datasets of Earth, the Moon and Mars, we demonstrate that martian gullied slopes are dissimilar to dry, gullied slopes on Earth and the Moon, but are similar to both terrestrial debris flows and fluvial gullies. We conclude that liquid water was integral to the process by which martian gullies formed. Finally, our work shows that quantitative 3D analyses of landscape have great potential as a tool in planetary science, enabling remote assessment of processes acting on planetary surfaces

    Introduced annuals mediate climate-driven community change in Mediterranean prairies of the Pacific Northwest, USA

    Get PDF
    12 pagesAim: How climate change will alter plant functional group composition is a critical question given the well-recognized effects of plant functional groups on ecosystem services. While climate can have direct effects on different functional groups, indirect effects mediated through changes in biotic interactions have the potential to amplify or counteract direct climatic effects. As a result, identifying the underlying causes for climate effects on plant communities is important to conservation and restoration initiatives. Location: Western Pacific Northwest (Oregon and Washington), USA. Methods: Utilizing a 3-year experiment in three prairie sites across a 520-km latitudinal climate gradient, we manipulated temperature and precipitation and recorded plant cover at the peak of each growing season. We used structural equation models to examine how abiotic drivers (i.e. temperature, moisture and soil nitrogen) controlled functional group cover, and how these groups in turn determined overall plant diversity. Results: Warming increased the cover of introduced annual species, causing subsequent declines in other functional groups and diversity. While we found direct effects of temperature and moisture on extant vegetation (i.e. native annuals, native perennials and introduced perennials), these effects were typically amplified by introduced annuals. Competition for moisture and light or space, rather than nitrogen, were critical mechanisms of community change in this seasonally water-limited Mediterranean-climate system. Diversity declines were driven by reductions in native annual cover and increasing dominance by introduced annuals. Main conclusions: A shift towards increasing introduced annual dominance in this system may be akin to that previously experienced in California grasslands, resulting in the “Californication” of Pacific Northwest prairies. Such a phenomenon may challenge local land managers in their efforts to maintain species-rich and functionally diverse prairie ecosystems in the future

    Wildfire Risk as a Socioecological Pathology

    Get PDF
    Wildfire risk in temperate forests has become a nearly intractable problem that can be characterized as a socioecological “pathology”: that is, a set of complex and problematic interactions among social and ecological systems across multiple spatial and temporal scales. Assessments of wildfire risk could benefit from recognizing and accounting for these interactions in terms of socioecological systems, also known as coupled natural and human systems (CNHS). We characterize the primary social and ecological dimensions of the wildfire risk pathology, paying particular attention to the governance system around wildfire risk, and suggest strategies to mitigate the pathology through innovative planning approaches, analytical tools, and policies. We caution that even with a clear understanding of the problem and possible solutions, the system by which human actors govern fire-prone forests may evolve incrementally in imperfect ways and can be expected to resist change even as we learn better ways to manage CNHS
    • …
    corecore