11,398 research outputs found

    Modulation and equalisation considerations for high performance radio LANs (HIPERLAN)

    Get PDF

    On suitable codes for frame synchronisation in packet radio LANs

    Get PDF

    ARPES in the normal state of the cuprates: comparing the marginal Fermi liquid and spin fluctuation scenarios

    Full text link
    We address the issue whether ARPES measurements of the spectral function Ak(ω)A_k (\omega) near the Fermi surface in the normal state of near optimally doped cuprates can distinguish between the marginal Fermi liquid scenario and the spin-fluctuation scenario. We argue that the data for momenta near the Fermi surface are equally well described by both theories, but this agreement is nearly meaningless as in both cases one has to add to Σ′′(ω)\Sigma^{\prime \prime} (\omega) a large constant of yet unknown origin. We show that the data can be well fitted by keeping only this constant term in the self-energy. To distinguish between the two scenarios, one has to analyze the data away from the Fermi surface, when the intrinsic piece in Σ(ω)\Sigma (\omega) becomes dominant.Comment: Accepted for publication in Europhysics Letters, Incorrect interpretation of reference 10 correcte

    Understanding adaptive gait in lower-limb amputees: insights from multivariate analyses.

    Get PDF
    BACKGROUND: In this paper we use multivariate statistical techniques to gain insights into how adaptive gait involving obstacle crossing is regulated in lower-limb amputees compared to able-bodied controls, with the aim of identifying underlying characteristics that differ between the two groups and consequently highlighting gait deficits in the amputees. METHODS: Eight unilateral trans-tibial amputees and twelve able-bodied controls completed adaptive gait trials involving negotiating various height obstacles; with amputees leading with their prosthetic limb. Spatiotemporal variables that are regularly used to quantify how gait is adapted when crossing obstacles were determined and subsequently analysed using multivariate statistical techniques. RESULTS AND DISCUSSION: There were fundamental differences in the adaptive gait between the two groups. Compared to controls, amputees had a reduced approach velocity, reduced foot placement distance before and after the obstacle and reduced foot clearance over it, and reduced lead-limb knee flexion during the step following crossing. Logistic regression analysis highlighted the variables that best distinguished between the gait of the two groups and multiple regression analysis (with approach velocity as a controlling factor) helped identify what gait adaptations were driving the differences seen in these variables. Getting closer to the obstacle before crossing it appeared to be a strategy to ensure the heel of the lead-limb foot passed over the obstacle prior to the foot being lowered to the ground. Despite adopting such a heel clearance strategy, the lead-foot was positioned closer to the obstacle following crossing, which was likely a result of a desire to attain a limb/foot angle and orientation at instant of landing that minimised loads on the residuum (as evidenced by the reduced lead-limb knee flexion during the step following crossing). These changes in foot placement meant the foot was in a different part of swing at point of crossing and this explains why foot clearance was considerably reduced in amputees. CONCLUSIONS: These results highlight that trans-tibial amputees use quite different gait adaptations to cross obstacles compared with controls (at least when leading with their prosthetic limb), indicating they are governed by different constraints; seemingly related to how they land on/load their prosthesis after crossing the obstacle

    Unusual Formation of Point-Defect Complexes in the Ultrawide-Band-Gap Semiconductor β-Ga2 O3

    Get PDF
    Understanding the unique properties of ultra-wide band gap semiconductors requires detailed information about the exact nature of point defects and their role in determining the properties. Here, we report the first direct microscopic observation of an unusual formation of point defect complexes within the atomic-scale structure of β-Ga2O3 using high resolution scanning transmission electron microscopy (STEM). Each complex involves one cation interstitial atom paired with two cation vacancies. These divacancy-interstitial complexes correlate directly with structures obtained by density functional theory, which predicts them to be compensating acceptors in β-Ga2O3. This prediction is confirmed by a comparison between STEM data and deep level optical spectroscopy results, which reveals that these complexes correspond to a deep trap within the band gap, and that the development of the complexes is facilitated by Sn doping through increased vacancy concentration. These findings provide new insight on this emerging material's unique response to the incorporation of impurities that can critically influence their properties

    Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles

    Get PDF
    BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection

    Tailoring CD19xCD3-DART exposure enhances T-cells to eradication of B-cell neoplasms.

    Get PDF
    Many patients with B-cell malignancies can be successfully treated, although tumor eradication is rarely achieved. T-cell-directed killing of tumor cells using engineered T-cells or bispecific antibodies is a promising approach for the treatment of hematologic malignancies. We investigated the efficacy of CD19xCD3 DART bispecific antibody in a broad panel of human primary B-cell malignancies. The CD19xCD3 DART identified 2 distinct subsets of patients, in which the neoplastic lymphocytes were eliminated with rapid or slow kinetics. Delayed responses were always overcome by a prolonged or repeated DART exposure. Both CD4 and CD8 effector cytotoxic cells were generated, and DART-mediated killing of CD4+ cells into cytotoxic effectors required the presence of CD8+ cells. Serial exposures to DART led to the exponential expansion of CD4 + and CD8 + cells and to the sequential ablation of neoplastic cells in absence of a PD-L1-mediated exhaustion. Lastly, patient-derived neoplastic B-cells (B-Acute Lymphoblast Leukemia and Diffuse Large B Cell Lymphoma) could be proficiently eradicated in a xenograft mouse model by DART-armed cytokine induced killer (CIK) cells. Collectively, patient tailored DART exposures can result in the effective elimination of CD19 positive leukemia and B-cell lymphoma and the association of bispecific antibodies with unmatched CIK cells represents an effective modality for the treatment of CD19 positive leukemia/lymphoma

    Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    Get PDF
    BACKGROUND: For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. METHODS: Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1) infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2) binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s) to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. RESULTS: HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. CONCLUSION: These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored
    • …
    corecore