3,379 research outputs found

    Observations on puerperal convulsions

    Get PDF
    n/

    Best Brief, Cross-Appellant

    Get PDF

    Assessment of protected area coverage of threatened ground beetles (Coleoptera: Carabidae): a new analysis for New Zealand

    Get PDF
    Gap analysis is a tool that allows conservationists to quantify the effectiveness of protected areas at representing species diversity, but the lack of distribution maps for invertebrates has precluded its application to the world’s most diverse animal groups. Here, we overcome this limitation and conduct a gap analysis, using niche modelling, on the Pterostichini (Coleoptera: Carabidae) of New Zealand, one of the most diverse and most threatened tribes of ground beetles in the nation. Niche modelling uses data on abiotic parameters to model predicted species ranges based on records of their known distribution, and is a useful tool for conservation planning. This method is widely applicable where there is good taxonomical knowledge of the group in question and distribution records are available. We obtained sample localities from museum records for 67 species of Pterostichini, including 10 species listed as threatened, and modelled their spatial distributions based on climate, landforms and soil properties. Most species had small spatial distributions, with 48–75% of species having ranges of less than 100 000 ha. We found the areas with highest species richness fell largely outside of the protected area network, as did the distribution of most individual species, with just 20–25% of species having more than 30% of their range falling within a protected area. In terms of percent land area, New Zealand has one of the world’s largest protected area networks, but the spatial distribution of that network affords little protection to this group of invertebrates. This analysis provides support for the creation of new reserves to increase the value and efficacy of the protected areas network

    Parties, movements and the 2014 Scottish independence referendum: Explaining the post-referendum party membership surges

    Get PDF
    Some political parties have experienced a resurgence in membership. This article seeks to explain membership surges in the Scottish National Party and Scottish Greens following the 2014 referendum on Scottish independence and an unusually movement-like campaign. Using data from a 2016ā€“17 survey of the partiesā€™ memberships, we examine why large numbers joined these pro-independence parties following defeat in the referendum. We demonstrate that the new members had experienced a sense of belonging to a Yes movement during the campaign but were not intensely active; and reasons for joining the parties look more conventional than movement-based. We argue that the referendum created a unique platform for the parties to advertise their objectives on the constitution and other policy areas and thus attract new recruits, few of whom were seeking to maintain the participatory activities that flourished during the referendum. The minority that are active movement-oriented joiners look the least likely to be satisfied by party membership

    Experimentally investigating annealed glazing response to long-duration blast

    Get PDF
    This paper examines the response of annealed glazing panels when subject to long-duration blast loading. In particular, it quantifies glazing response metrics while varying glazing thickness, glazing area, aspect ratio, and edge conditions. With positive phases exceeding 100 ms long-duration blasts result in significant specific impulse and dynamic pressures. The transient dynamic response of annealed glazing during these events is a complex function of structural arrangement, material properties, and explosive proximity. Twelve full-scale air blast trials using a heavily armored test structure subjected 24 glazing panels to approximately 14-kPa free-field overpressure and approximately 110-ms positive-phase duration. Results are reported where it is shown that elastic-edge supports can prevent glazing breakage better than rigidly clamped arrangements when suitable panel dimensions are employed. Fragmentation modes are also demonstrated to be a function of edge conditions, with elastically supported panels producing large, angular fragments. In contrast, rigid arrangements are shown to induce localized impulsive stress transmission at clamped edges, leading to significant cracking and small fragments. Substantially different fragment masses and geometries demonstrate the need to accurately quantify edge supports when appraising fragment hazard. Quantification of peak panel deflection, breakage time, and applied breakage impulse is then presented, with results showing the influence of edge supports and aspect ratio on glazing response to be dependent on proximity to the threshold area for a particular thickness

    The influence of structural arrangement on long-duration blast response of annealed glazing

    Get PDF
    This paper investigates the influence of structural arrangement on long-duration blast loaded annealed glazing via variable thickness, area, aspect ratio and edge support conditions. Initially, the findings of eighteen full-scale air-blast trials employing 33 annealed glazing panels are reported where it is demonstrated that fracture mode and fragmentation are a strong function of edge supports. Rigidly clamped edges are shown to induce localised stress transmission, producing significant cracking and small fragments. In contrast, elastic edges are shown to produce large, angular fragments, demonstrating the importance of accurately modelling edge conditions when analysing fragment hazard. Quantification of peak centre panel deflection and breakage time is then presented where variable results indicate the influence of edge supports and aspect ratio to be dependent on proximity to the threshold area as a function of glazing thickness. An initial Applied Element Method (AEM) analysis is then employed to model the influence of structural arrangement on long-duration blast-loaded annealed glazing. AEM models are shown to reasonably predict glazing fragmentation behaviour, breakage time and peak panel deflection at the moment of breakage. Thus indicating AEM's potential suitability to provide a predictive capacity for annealed glazing response during long-duration blast

    Intrinsic Optical and Electronic Properties from Quantitative Analysis of Plasmonic Semiconductor Nanocrystal Ensemble Optical Extinction

    Get PDF
    The optical extinction spectra arising from localized surface plasmon resonance in doped semiconductor nanocrystals (NCs) have intensities and lineshapes determined by free charge carrier concentrations and the various mechanisms for damping the oscillation of those free carriers. However, these intrinsic properties are convoluted by heterogeneous broadening when measuring spectra of ensembles. We reveal that the traditional Drude approximation is not equipped to fit spectra from a heterogeneous ensemble of doped semiconductor NCs and produces fit results that violate Mie scattering theory. The heterogeneous ensemble Drude approximation (HEDA) model rectifies this issue by accounting for ensemble heterogeneity and near-surface depletion. The HEDA model is applied to tin-doped indium oxide NCs for a range of sizes and doping levels but we expect it can be employed for any isotropic plasmonic particles in the quasistatic regime. It captures individual NC optical properties and their contributions to the ensemble spectra thereby enabling the analysis of intrinsic NC properties from an ensemble measurement. Quality factors for the average NC in each ensemble are quantified and found to be notably higher than those of the ensemble. Carrier mobility and conductivity derived from HEDA fits matches that measured in the bulk thin film literature

    Theoretical Elastic Stress Distributions Arising from Discontinuities and Edge Loads in Several Shell-Type Structures

    Get PDF
    The deformation and complete stress distribution are determined for each of the following edge loaded thin shells of revolution: (1) a right circular cylinder, (2) a frustum of a right circular cone, and (3) a portion of a sphere. The locations of the maximum circumferential and meridional stresses on both the inner and outer surfaces are also found. The basic equations for the above were selected from the published literature on the subject and expanded to produce to resultant-stress equations in closed from where practicable to do so. Equations are also developed for the discontinuity shear force and bending moment at each of the following junction: (1) axial change of thickness in a circular cylinder, (2) axial change of thickness in a cone, (3) change of thickness in a portion of a sphere, (4) a cylinder and a cone, (5) a cylinder and a portion of a sphere(6) a cylinder and a flat head, and (7) a cone and a portion of a sphere
    • ā€¦
    corecore