16,249 research outputs found

    Prediction of flow in diesel engine cylinders

    Get PDF
    Imperial Users onl

    Convective Dynamos and the Minimum X-ray Flux in Main Sequence Stars

    Full text link
    The objective of this paper is to investigate whether a convective dynamo can account quantitatively for the observed lower limit of X-ray surface flux in solar-type main sequence stars. Our approach is to use 3D numerical simulations of a turbulent dynamo driven by convection to characterize the dynamic behavior, magnetic field strengths, and filling factors in a non-rotating stratified medium, and to predict these magnetic properties at the surface of cool stars. We use simple applications of stellar structure theory for the convective envelopes of main-sequence stars to scale our simulations to the outer layers of stars in the F0--M0 spectral range, which allows us to estimate the unsigned magnetic flux on the surface of non-rotating reference stars. With these estimates we use the recent results of \citet{Pevtsov03} to predict the level of X-ray emission from such a turbulent dynamo, and find that our results compare well with observed lower limits of surface X-ray flux. If we scale our predicted X-ray fluxes to \ion{Mg}{2} fluxes we also find good agreement with the observed lower limit of chromospheric emission in K dwarfs. This suggests that dynamo action from a convecting, non-rotating plasma is a viable alternative to acoustic heating models as an explanation for the basal emission level seen in chromospheric, transition region, and coronal diagnostics from late-type stars.Comment: ApJ, accepted, 30 pages with 7 figure

    The Magnetic Fields of Classical T Tauri Stars

    Full text link
    We report new magnetic field measurements for 14 classical T Tauri stars (CTTSs). We combine these data with one previous field determination in order to compare our observed field strengths with the field strengths predicted by magnetospheric accretion models. We use literature data on the stellar mass, radius, rotation period, and disk accretion rate to predict the field strength that should be present on each of our stars according to these magnetospheric accretion models. We show that our measured field values do not correlate with the field strengths predicted by simple magnetospheric accretion theory. We also use our field strength measurements and literature X-ray luminosity data to test a recent relationship expressing X-ray luminosity as a function of surface magnetic flux derived from various solar feature and main sequence star measurements. We find that the T Tauri stars we have observed have weaker than expected X-ray emission by over an order of magnitude on average using this relationship. We suggest the cause for this is actually a result of the very strong fields on these stars which decreases the efficiency with which gas motions in the photosphere can tangle magnetic flux tubes in the corona.Comment: 25 pages, 5 figure

    Cool Jupiters greatly outnumber their toasty siblings : Occurrence rates from the Anglo-Australian Planet Search

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©2019 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Our understanding of planetary systems different to our own has grown dramatically in the past 30 yr. However, our efforts to ascertain the degree to which the Solar system is abnormal or unique have been hindered by the observational biases inherent to the methods that have yielded the greatest exoplanet hauls. On the basis of such surveys, one might consider our planetary system highly unusual - but the reality is that we are only now beginning to uncover the true picture. In this work, we use the full 18-yr archive of data from the Anglo-Australian Planet Search to examine the abundance of 'cool Jupiters' - analogues to the Solar system's giant planets, Jupiter and Saturn. We find that such planets are intrinsically far more common through the cosmos than their siblings, the hot Jupiters.We find that the occurrence rate of such 'cool Jupiters' is 6.73 +2.09 -1.13 per cent, almost an order of magnitude higher than the occurrence of hot Jupiters (at 0.84 +0.70 -0.20 per cent). We also find that the occurrence rate of giant planets is essentially constant beyond orbital distances of ~1 au. Our results reinforce the importance of legacy radial velocity surveys for the understanding of the Solar system's place in the cosmos.Peer reviewe

    Observations of T Tauri Disks at Sub-AU Radii: Implications for Magnetospheric Accretion and Planet Formation

    Full text link
    We determine inner disk sizes and temperatures for four solar-type (1-2 M_{\odot}) classical T Tauri stars (AS 207A, V2508 Oph, AS 205A, and PX Vul) using 2.2 μ\mum observations from the Keck Interferometer. Nearly contemporaneous near-IR adaptive optics imaging photometry, optical photometry, and high-dispersion optical spectroscopy are used to distinguish contributions from the inner disks and central stars in the interferometric observations. In addition, the spectroscopic and photometric data provide estimates of stellar properties, mass accretion rates, and disk co-rotation radii. We model our interferometric and photometric data in the context of geometrically flat accretion disk models with inner holes, and flared disks with puffed-up inner walls. Models incorporating puffed-up inner disk walls generally provide better fits to the data, similar to previous results for higher-mass Herbig Ae stars. Our measured inner disk sizes are larger than disk truncation radii predicted by magnetospheric accretion models, with larger discrepancies for sources with higher mass accretion rates. We suggest that our measured sizes correspond to dust sublimation radii, and that optically-thin gaseous material may extend further inward to the magnetospheric truncation radii. Finally, our inner disk measurements constrain the location of terrestrial planet formation as well as potential mechanisms for halting giant planet migration.Comment: Accepted for publication in ApJ (May 1, 2005 issue

    Sequence analysis of Hungarian LHON patients not carrying the common primary mutations

    Get PDF
    We describe sequence analysis of the mitochondrial DNA of five Hungarian patients diagnosed with probable LHON, who do not carry any of the three primary point mutations. We report three novel mutations, one of which might have a pathogenic rol

    The Angular Momentum Content and Evolution of Class I and Flat-Spectrum Protostars

    Full text link
    We report on the angular momentum content of heavily embedded protostars based on our analysis of the projected rotation velocities (v sin i s) of 38 Class I/flat spectrum young stellar objects presented by Doppmann et al (2005). After correcting for projection effects, we find that infrared-selected Class I/flat spectrum objects rotate significantly more quickly (median equatorial rotation velocity ~ 38 km/sec) than Classical T Tauri stars (CTTSs; median equatorial rotation velocity ~ 18 km/sec) in the Rho Ophiuchi and Taurus-Aurigae regions. The detected difference in rotation speeds between Class I/flat spectrum sources and CTTSs proves difficult to explain without some mechanism which transfers angular momentum out of the protostar between the two phases. Assuming Class I/flat spectrum sources possess physical characteristics (M_*,R_*,B_*) typical of pre-main sequence stars, fully disk locked Class I objects should have co-rotation radii within their protostellar disks that match well (within 30%) with the predicted magnetic coupling radii of Shu et al (1994). The factor of two difference in rotation rates between Class I/flat spectrum and CTTS sources, when interpreted in the context of disk locking models, also imply a factor of 5 or greater difference in mass accretion rates between the two phases.Comment: 13 pages, 6 figures. Accepted for publication in the Astronomical Journal (tentatively for June 2005 edition

    Stationarity, soft ergodicity, and entropy in relativistic systems

    Get PDF
    Recent molecular dynamics simulations show that a dilute relativistic gas equilibrates to a Juettner velocity distribution if ensemble velocities are measured simultaneously in the observer frame. The analysis of relativistic Brownian motion processes, on the other hand, implies that stationary one-particle distributions can differ depending on the underlying time-parameterizations. Using molecular dynamics simulations, we demonstrate how this relativistic phenomenon can be understood within a deterministic model system. We show that, depending on the time-parameterization, one can distinguish different types of soft ergodicity on the level of the one-particle distributions. Our analysis further reveals a close connection between time parameters and entropy in special relativity. A combination of different time-parameterizations can potentially be useful in simulations that combine molecular dynamics algorithms with randomized particle creation, annihilation, or decay processes.Comment: 4 page

    Effect of Thermal Aging and Chemical Treatment on Tensile Properties of Coir Fiber.

    Get PDF
    Effect of thermal aging and chemical treatment on the physical propertiesof coir fiber was investigated. Coir fibers were treated with sodium hydro-xide and glutaraldehyde for 2 h. The influence of alkali and aldehydetreatment on tensile strength and elongation at break was studied in detail.Enhancement in tensile strength of coir fiber was observed up to five daysof aging at 50°C and further decreased. Thermal cross linking of cellulosepresent in the fiber may be the reason for the increase in tensile strengthand thermal degradation due to the chain scission of cellulose reduced thetensile strength. Sodium-hydroxide-treated samples showed an increase intensile strength and reduction in elongation at break. The removal ofimpurities such as waxy and fatty acid residues from the coir fiber byreacting with strong base solution improved the strength of fiber. Crosslinking of cellulose with glutaraldehyde in the fiber reduced the elasticityand enhances the strength of the material. Scanning electron microscopywas employed to analyze the change in surface morphology upon chemicaltreatment. Improvement in the tensile strength suggests that NaOH andglutaraldehyde can be effectively used to modify coir fiber with excellentphysical properties
    corecore