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ABSTRACT  

This study describes the development and application of a 

theoretical method for calculating the flow and heat transfer in the 

cylinder of a reciprocating diesel engine. 

The procedure operates by solving the partial differential 

equations that govern the conservation of mass, momentum and thermal 

energy, whilst the effects of turbulence are included by solving 

two additional differential equations for the turbulent kinetic energy-

and its dissipation rate. The complex shape of the piston bowl and 

time-varying dimensions of the solution domain are accommodated 

by formulating the equations in an axisymmetric, general curvilinear-

orthogonal co-ordinate system and applying a co-ordinate transformation, 

such that the computational grid that is superimposed upon the flow 

field and used for the solution of finite-difference approximations 

to the differential equations, is always bounded by the cylinder head, 

cylinder wall and piston surfaces. The curvilinear-orthogonal grid 

for the piston bowl is obtained ā priori by solving numerically a pair 

of Laplace equations for the physical co-ordinates. 

The accuracy and stability of alternative methods of differencing 

the differential equations are investigated and recommendations are 

made for a scheme that is stable and reasonably accurate for the 

conditions found•in engine cylinders. 

The method is subsequently applied to 6 test cases for which 

experimental data are available. The results of this study indicate 

that good qualitative and reasonable quantitative agreement can usually 

be obtained, although under certain conditions, the predictions are 



substantially in error. Various reasons are suggested to account 

for the discrepancies observed. 

Finally, the flow structure in a number of diesel engine 

piston bowls typical of current design are analysed in depth. Here, 

a number of common features and differences between the flow structures 

in the various bowls are identified and reasons are put forward to 

explain these. 
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CHAPTER 1  

INTRODUCTION 

Preliminary Remarks  

For many years, the engine industry has persued an approach 	ty 

of cut-and-try development aided by various thermo-chemical cycle 

simulation methods to both improve existing engines and develop 

new designs. These methods proved adequate when allowed to 

dictate their own slow evolutionary pace, but the current pressures 

of, on the one hand, government legislation against the emission 

of numerious pollutants, and on the other, from the rise in the 

cost of crude oil, have provided an impetus to produce cleaner 

and more energy-efficient engines. In the small-engine (1.5 to 6 litres) 

market, the direct-injection (DI) diesel engine is generally more 

efficient than its two main rivals, namely the indirect-injection 

(IDI) prechamber diesel and petrol engines using either conventional 

or stratified-charge combustion systems. Although the capital and 

maintainence costs of a diesel engine are higher than those of an 

equivalent conventional petrol unit, because of the heavier structure 

and fuel-injection equipment required for the former, in the eyes 

of the consumer, this is apparently outweighed by the generally 

lower cost of diesel fuel (with the exception of the UK),better 

fuel consumption and the increased reliability and time between 

servicing, as evidenced by the recent dramatic growth of the diesel- 

powered passenger car market. 

During the last decade, the author's company has pl'rsued 

a policy of developing a more efficient, cleaner and quieter DI 
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combustion system. This work has been largely experimental in 

nature, that is, reliance has been placed on test-bed analysis of 

different combustion bowl shapes, swirl levels, fuel injection 

characteristics etc. as reported, for example, by Middlemiss (1978). 

It become apparent during the early stages of this program that 

information about the flow structure inside the cylinder would 

provide a greater understanding of the fuel-air mixing and combustion 

processes. This is particularly true for the DI combustion system 

as described below. 

The production of nitrogen oxide (NO) during combustion is 

determined to a large extent by the gas temperature, as the 

dissociation of the oxygen molecules into atomic oxygen, required to 

initiate the NO formation chain reaction (Zeldovich et al, 1947), 

occurs only at elevated temperatures. High temperatures occur within 

the combustion chamber whenever the heat-release rate is large, 

and this in turn depends upon a number of factors which include 

fuel quality and quantity, the gas temperature and the fuel-air 

mixing process. The fuel quality and gas temperature (and to a 

lesser extent the pressure) determine the duration of the ignition 

delay period (Henein and Bolt, 1969), which is defined as the time 

interval between the start of injection and the start of combustion, 

during which the fuel mixes with the air and undergoes chemical 

reactions that are progressively more exothermic until at the 

end of this period, the mixture formed commences burning as a 

premixed flame (Lyn, 1963). The duration of the ignition delay 

is a major factor in determining the amount of fuel-air mixture in 

a "ready-to-burn" state and consequently the intensity of the initial 



-3 

heat-release. Low cetane number fuels and/or advanced injection 

timings both increase the duration of the ignition delay. After 

this essentially premixed-burning stage, the combustion rate is 

governed largely by the rate of mixing of the remaining fuel and 

surrounding air and it is during this period that the NO is formed 

in fuel-lean regions lHenein, 1976). When the temperature falls 

during expansion, the NO concentration does not decrease to its 

equilibrium value but remains nearly constant (Starkman and Newall, 1967). 

Reduction of the ignition delay is desirable in that it 

is accompanied by lower gas temperatures and reduced nitrogen oxide 

emissions. This can be accomplished relatively easily by retarding 

the start of injection; however, the advantage gained is offset 

by both increased smoke formation from the now longer mixing- 

controlled phase of the combustion process that occurs after the 

initial premixed burning stage, and the cycle efficiency is reduced 

as a result of the late burning. At retarded injection timings, 

it is found that an increase in the fuel-air mixing rate improves 

cycle efficiency as a consequence of the increased combustion rate 

and reduces smoke formation because of the reduction in locally 

fuel-rich zones within the combustion chamber (Kahn and Wang, 1973). 

The re-entrant bowl piston, of which a number of designs 

are shown in cross-section in fig. 1.1 (taken from Middlemiss, 1978), 

provides a means of increasing the mixing rate due to the high 

velocities and turbulence levels induced in the bowl near TDC. Thus, 

retarded injection timings may be used to reduce the formation of 

nitrogen oxides without incurring the penalties of lower cycle 

efficiency and increased smoke. 

In addition to the parameters already mentioned, a number 

of other factors, such as intake port design,are known to influence 

the combustion process by altering the air motion within the 



cylinder. In the past, simple theoretical models have been 

constructed to analyse individual aspects of the air motion (see 

e.g. Fitzgeorge and Allison, 1963). However, the strong inter-

relationship between different features of the flow, for example, 

squish-swirl interactions near TDC, prevents these models from 

yielding anything but the crudest of qualitative information to the 

development engineer, indeed, such models may on occasions provide 

misleading information. As an illustration of this latter point, 

calculations of in-cylinder swirl using the Fitzgeorge and Allison 

(1963) method for two different inlet ports of helical and directed 

designs were found to give identical swirl momentums at inlet 

valve closing (Brandt et al, 1979). In practice however, the 

performance of otherwise identical engines was found to vary dramatically 

when fitted with these two alternative inlet systems. The performance 

differences were attributed to variations in the spatial distributions 

of momentum within the cylinder, an aspect not addressed by the 

simple model. Similar changes in engine performance have been noted 

for other design changes (P9iddlemiss, 1978) and have pointed to the 

need to understand the underlying physics. This in turn has given 

rise to, on the one hand, multi-dimensional prediction methods that 

are capable, at least in principle, of calculating the important 

properties of the flow throughout the combustion chamber, and on 

the other, advanced measurement methods such as Laser Doppler 

Anemometry. 

This thesis focusses attention on the theoretical aspects 

of in-cylinder air motion. The specific objective of this work 

is to develop a numerical calculation procedure for predicting the 

flow in engine cylinders equipped with piston bowls such as those 

shown in fig. 1.1, although the method developed is not necessarily 
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restricted to diesel engines and is equally applicable to any 

axisymmetric geometry. 

The Present Contribution  

The work presented in this thesis is concerned with developing 

a computer-based numerical method for solving the partial differential 

equations governing the conservation of mass, momentum and energy 

for the turbulent flow and heat transfer processes in a co-ordinate 

frame that allows the important features of a moving piston and 

complex piston bowl shapes to be included in a realistic fashion, 

whilst the effects of turbulence are incorporated using a contemporary 

two-equation turbulence model. Specifically, this work makes con-

tributions in the following areas: 

1. The formulation of the governing equations in a general curvilinear- 

orthogonal axisymmetric co-ordinate system that allows expansion 

and contraction of the solution domain in the swept volume and 

the accurate representation of complex piston-bowl or head 

geometries. 

2. Discretisation of the above equations in various forms and 

examination of their relative accuracy and stability. Recommendations 

are made for a scheme offering reasonably accurate and numerically 

stable solutions for the conditions found in reciprocating engines. 

3. Validation of the theoretical model by comparison with data 

from six different experiments performed by other workers and 

identification of the capabilities and limitations of the model. 
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4. Flow analyses using the new prediction method for a variety of 

re-entrant bowl pistons where a number of features of commonality 

and differences between the designs are identified. 

Contents of Thesis  

Chapter 2 describes both experimental and theoretical work 

by previous researchers. The intake-generated flow and the effects 

of the subsequent compression process on both the mean flow and 

the turbulence structure are examined. Squish and swirl are 

especially important aspects of the flow and these are dealt with 

separately. Measurements of the flow in axisymmetric engines are 

valuable for the purpose of validating the theoretical model developed 

in later chapters and a number of experiments in both axisymmetric 

and nearly-axisymmetric engine configurations are described. Finally, 

the efforts of other research groups in the sphere of multi-dimensional 

in-cylinder flow modelling are reviewed and the advantages and 

shortcomings of the physical modelling and numerical solution methods 

they devised are identified and compared with the method developed 

here. 

In chapter 3, the differential equations governing the 

turbulent in-cylinder flow are assembled. They are first developed 

in a general curvilinear-orthogonal axisymmetric co-ordinate system, 

a contemporary two-equation model being used to represent the effects 

of turbulence. A co-ordinate transformation is subsequently applied 

which allows the solution domain to be always bounded by the cylinder 

head, cylinder wall and piston surfaces. 
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Finite difference approximations to the differential 

equations are derived in chapter 4 by integrating the latter over 

finite volumes formed by the intersection of iso-co-ordinate 

lines of an orthogonal grid. The orthogonal grid is 

obtained ā priori for each geometry by solving numerically a pair 

of Laplace-like equations for the physical co-ordinates; this is 

described in Appendix 1. The difference equations are presented in 

a general fashion such that the fully-implicit and time-centred 

formulations may be easily extracted. A stability analysis of 

the latter is undertaken and the effects of grid spacing and time- 

step on the solution are quantified for both schemes for a simplified 

one-dimensional idealistation of the problem and a full two-dimensional 

turbulent calculation. Finally, an ad-hoc technique is presented 

for adjusting the under-relaxation factors, used in the solution of 

the algebraic approximations to the differential equations, to 

maintain stability and improve the convergence rate. 

Chapter 5 describes validation of the model with six sets 

of experimental data obtained from various sources. These cover 

three cases of flow in a non-compressing model engine, in which the 

effects of swirl and a piston bowl are examined, two cases in a 

motored compressing engine both with and without a cavity in the 

cylinder head which is equipped with a single central valve, and 

lastly, comparisons with instantaneous heat flux measurements in 

a motored high-swirl engine with an axisymmetric cavity piston bowl 

but with the usual off-axis inlet valve arrangement. Finally, the simple 

theories of squish and swirl, described in chapter 2, are compared 

with predictions using the present calculation method. 

In chapter 6, predictions of the effects of swirl on the 

flow structure in simple cylindrical-cavity piston,bowis both with 
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and without lips are described. Also, the predicted flow structures 

for five different re-entrant bowl pistons are analysed in depth 

for conditions approximating as closely as possible those found in 

engines. 

Finally, in chapter 7, the achievements of this study 

are reviewed and suggestions are made for improvements and extensions. 
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CHAPTER 2 

SURVEY OF PREVIOUS RESEARCH  

2.1 Introduction  

This chapter deals with both experimental and theoretical 

studies of in-cylinder flows in motored engines by previous researchers. 

There are a number of aspects of these flows, such as for example, 

the intake-generated structure, squish and swirl, that can be treated 

in relative isolation and most studies have focussed on such specific 

features. Many researchers have found similar behaviour for certain 

of these flow phenomena, often in very different engines; where 

areas of agreement are found, these are indicated. There is a further 

body of literature concerned with fuel sprays and the combustion 

process; these have been omitted. 

Section 2.2 of the chapter deals primarily with intake 

generated flow and turbulence and the subsequent compression and 

expansion process. This catagorisation is not exclusive however, and 

other aspects of the flow are reported where included in the same 

publication. The bulk air movements known as squish and swirl have 

long been identified as being of major importance, especially in Diesel 

engines, and both experimental studies and simple analytical tools 

relating to these are described in section 2.3. Measurements of the 

flow in axisymmetric engine cylinders are important for the validation 

of the predictive model developed in this thesis and are described 

in section 2.4. Finally, section 2.5 presents a detailed examination 

of multi-dimensional in-cylinder flow models developed by other 

researchers. One and zero dimensional models are excluded from this 

survey, but a summary of such models is given by Watkins (1977). 



- 10 - 

2.2 - Experimental Studies of Air-Motion and Turbulence  

One of the first attempts to study in-cylinder air-motion 

was that of Lee (1939) who introduced feathers into the intake of a 

motored 4-stroke engine equipped with a glass cylinder and cylinder 

head to permit photography. It was observed that the air motion 

created during intake persisted throughout compression but was 

suppressed soon after the start of the expansion stroke. A shrouded 

valve was found to cause rotation (swirl) that remained throughout 

the cycle. 

Molchanov (1953) used a hot-wire anemometer (HWA) to measure 

velocities in an engine with a cylindrical disc chamber (flat 

cylinder head and piston). The engine was motored at 900 rev/min and 

results were obtained at the probe locations shown in fig. 2.1. The 

highest velocities were recorded near the valve and reached a maximum 

after 60°  of inlet valve opening but subsequently decayed until 30°  

after inlet valve closure, thereafter remaining approximately constant. 

An apparent increase in the turbulence level near TDC of the compression 

stroke was noted (a similar trend was found by Witze (1976c) for a 

similar combustion chamber geometry but later dismissed by him as 

being the result of an incorrect calibration (Witze, 1979)). Compression 

ratio was found to have little effect on either the mean or turbulent 

velocities, however the insertion of anular (squish) inserts resulted 

in large increases in turbulence levels. 

A similar cylindrical combustion chamber was used by 

Semenov (1958) (fig.2.2) who extracted mean and turbulent velocities 

from HWA measurements by time-averaging over 24°  crank-angle intervals 



and subsequently ensemble averaging over 20-40 engine cycles. The 

signal was also passed through a band-pass filter to give the spectral 

composition of the turbulent fluctuations. Semenov concluded that 

the large spatial velocity variationswhich he observed reflect the 

jet-like character of the incoming flow and the associated high 

velocity gradients are the main source of turbulence. Both the mean 

and turbulent velocities decayed during the initial part of compression, 

thereafter remaining relatively constant for the rest of the stroke. 

The energy-containing turbulent eddies were mostly in the 1 to 3 kHz 

frequency range during intake although during compression there 

was a shift toward the low-frequency part of the spectrum. The 

integral or macro length-scale was estimated to be of the order 1.8 

to 2.2 mm during intake. The mean velocities at TDC of the compression 

stroke were reduced by 20% with an increase of compression ratio 

from 4 to 9.5, and varied with the square of the engine speed. 

HWA measurements were made by Arnold et al (1972) in a motored 

engine with a hemispherical cylinder head and flat piston crown, 

shown in fig. 2.3. Both stationary and traversing probes were used 

to obtain measurements at points a, b and c. His results indicate a peak 

inlet velocity of the order 35 m/s from a stationary probe at point 

a with the hot-wire oriented to measure the resultant of the radial and 

tangential components. The mean velocities generally decreased 

through the latter part of valve•opening and during compression 

although further maxima were obtained with some orientations of a 

masked inlet valve. In all cases however, the motion decayed during 

the 40°  crank-angle prior to TDC and remained at a low level throughout 

expansion. During exhaust, two maxima, lower than those during intake, 

were measured, and these were attributed to gas expansion through the 
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valve before BDC and expulsion by the piston after BDC. 

James (1972) derived mean and turbulent velocities from 

instantaneous HWA measurements made within a simple cylindrical 

combustion chamber and a bowl-in-head configuration. The latter 

geometry and the probe positions are shown in fig. 2.4. Spacers were 

fitted between the cylinder head and block to investigate the effects 

of compression ratio. Filters were used to obtain the energy spectrum 

within the range 90 to 5800 Hz, the signal being time-averaged over 

10°  crank-angle intervals and ensemble-averaged over 22 cycles. The 

mean velocities generally decayed throughout the compression stroke, 

an effect which was attributed to the extraction of energy from the 

mean flow by the turbulence. Before TDC, a squish velocity of 

6 m/s was observed with a compression ratio of 8.88:1 and TDC piston-

head clearance of 1.5 mm at 1500 rev/min for the bowl-in-head geometry. 

No indication of squish was found at the lower compression ratios 

due to the higher piston-head clearances, although reverse squish 

(an outward radial flow from the combustion bowl after TDC) was 

observed during the period 20°-30°  ATDC. The mean velocity at TDC 

varied linearly with engine speed for both disc and bowl-in-head 

geometries. The turbulent velocity decreased by about 50% from IVC 

to TDC at 1450 rev/min in the cylindrical disc chamber but stayed 

virtually constant at the lower speed of 700 rev/min. Most of the 

turbulence energy was confined to frequencies below 700 Hz. 

Dent and Salama (1975a, 1975b) have made velocity 

measurements in engines with a wedge combustion chamber of 9:1 

compression ratio and in a "Heron" chamber of 8.9:1 compression 

ratio, shown in figs. 2.5 and 2.6 respectively. HWA was used, the 

temperature-corrected signal being time-averaged over 10°  crank-angle 
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intervals and ensemble averaged for 70 to 370 cycles. Results are 

reported for engine speeds varying between 1000 and 3500 rev/min. 

It was found that both mean and turbulent velocities peaked during 

inlet and subsequently decayed until inlet valve closure, the relative 

turbulence intensity (the turbulent velocity normalised by the mean 

velocity) remaining approximately constant during this time. In the 

wedge chamber, both mean and turbulent velocities increased during 

the compression period as a result of squish-induced motion but decayed 

in the 20°  immediately prior to TDC, an effect attributed to viscous 

dissipation and the increased surface to volume ratio. In the Heron 

chamber, where squish is not strong, the gas velocity decayed continuously 

from inlet valve closure until TDC of compression. The variation of 

the energy spectrum during the cycle for the wedge chamber showed 

a similar trend to that found by Semenov (1958), that is, high frequency 

(1-2 kHz) turbulence being generated during intake with a shift toward 

the lower frequencies (0.7 - 1kHz) during compression. The micro length-

scale was estimated to lie between 0.2 and 0.6 mm for both chambers at 

1000 rev/min and re-analysis of the data of Semenov (1958) and James 

(1972), which covers compression ratios of 4:1 to 9.5:1, showed their 

data to lie in the range 0.2 to 0.5 mm. Further investigation using 

a Ricardo E6 (variable compression ratio) engine showed a reduction 

in spatial microscale with increasing compression ratio. In the Heron 

chamber the macro length-scale was found to be 3 to 4 times larger than 

the micro-scale at TDC. 

* 
The macro length-scale is representative of the size of turbulent 
eddies that are generated by the mean flow. Eddies of this size 
are responsible for the Reynolds stresses (see section 3.6) and 
turbulent transport of the flow properties. Dissipation of turbulence 
occurs in the smaller (micro length-scale) eddies. 
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Lancaster (1976) measured instantaneous velocity at the 

spark-gap location of a cylindrical disc combustion chamber using a 

tri-axial HWA. Three orthogonal velocity components (axial, radial 

and tangential) were simultaneously recorded for a range of engine 

speeds, volumetric efficiencies and compression ratios for both shrouded 

and non-shrouded valves. The continuous signal was analysed in 

three different ways: firstly, by ensemble averaging over 100 engine 

cycles; secondly, by applying a stationary analysis such that the 

signal was time-averaged over a 45°  interval from one engine cycle, 

and thirdly, using a non-stationary analysis whereby the ensemble-

averaged velocity is subtracted from the instantaneous value and the 

remaining data are time-averaged over 45°. The purpose of these last 

two methods is to eliminate cycle-to-cycle variations in the calculation 

of the turbulent velocity (see section 3.6). 

The main findings of the study are as follows: 

1. The turbulent velocity showed a strong correlation with mean 

velocity during most of the cycle, except for the period immediately 

after IVC for the shrouded valve where the turbulence intensity 

dropped with the termination of the jet flow through the valve 

although the mean velocity remained high due to swirl. 

2. Both mean and turbulent velocities showed a linear increase with 

engine speed for the non-shrouded valve during most of the compression 

period. Variations in volumetric efficiency produced an inconclusive 

result and it was thought that changes in the flow structure had 

occurred. No significant effects of compression ratio on either 

mean or turbulent velocities were observed. 
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3. The turbulence intensities derived from the three different 

averaging procedures showed considerable variation. The high 

rate-of-change of mean velocity for the shrouded valve invalidates 

the use of averaging over a 45°  interval but the more slowly-

varying non-shrouded valve data showed the =turbulence intensities 

from the stationary and non-stationary analysis to be consistently 

below those from ensemble averaging. The differences, up to 

35%, are indicative of the level of cycle-to-cycle variations. 

4. The energy spectrum was obtained for the shrouded valve during 

the period 45°  BTDC to TDC using both stationary and non-stationary 

analyses. In the case of the former, 80% of the energy was contained 

in frequencies below 1 kHz and 98% below 5 kHz whilst for the 

latter, 70% was found in frequencies below 1 kHz. The fraction of 

turbulence energy at the high frequencies was found to reach a 

maximum near the end of intake and the beginning of compression, 

shifting towards the lower frequencies during compression. These 

results support the theory that turbulence is generated during 

intake and decays during compression and is in agreement with the 

findings of Semenov (1958), James (1972) and Dent and Salama (1975a, 

1975b). 

5. The turbulence was found to be anisotropic during intake but 

tended towards isotropy during compression. 

Velocity measurements were made in a motored engine by 

Tindal et al (1974) with two different piston crowns having either 

a flat top or a part-spherical recess. By inserting L-shaped probe 

holders through a central hole in the cylinder head, HWA velocity 

measurements were recorded at r/R0= .37, .63 and .92 (where r = radial 

distance and R0= bore/2). A cam mechanism allowed the probe to follow 

the piston down the stroke to a predetermined position and remain 
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stationary until it was raised in front of the piston returning 

on the upward stroke. Three positions were available and additional 

fixed probes in the cylinder head allowed measurements in the combustion 

space as shown in fig. 2.7. Vertical and horizontal probe orientations 

were used to measure the resultant of tangential and radial components, 

and, axial and radial components respectively. 

In the disc chamber, an unmasked valve used in conjunction 

with an inlet port having no strong directional influence resulted 

in large cycle-to-cycle variations in gas motion. At r/R0= .92, 

the vertical and horizontal probes measured peak inlet velocities 

of 47 m/s and 43 m/s respectively at 60°  ATDC falling to 6 m/s and 

5 m/s at IVC. The velocities during compression cannot be deduced 

easily as the data is presented with an ordinate of Reynolds number 

(which varies with the gas properties). 

A suitably oriented masked valve reduced cycle-to-cycle 

variations and produced a swirl that persisted throughout compression 

with a progressive tendency towards solid body rotation at the outer 

radii. Calculations based upon the measured profiles seemed to 

indicate an increase in angular momentum between IVC and TDC. This 

anomalous result is attributed to axial variations in the swirl profile 

at TDC (the radial velocity was assumed zero at all times) when data 

from only one plane was used to calculate the angular momentum. 

Measurements with a vertical probe at r = .7 in (r/R0. .37) 

that penetrated .25 in into a shallow piston bowl .75 in deep x 2.2 in 

diameter at TDC showed increased velocities at the end of compression 

over those in the disc chamber. An increase from 36 m/s to 61 m/s 

was observed when the compression ratio was increased from 6.7:1 to 

10:1 by varying the piston-cylinder head clearance. Squish velocities 
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would be low in this engine even for the 10:1 compression ratio (of 

the order 5 m/s based upon the Fitzgeorge and Allison (1963) analysis, 

described later), as the TDC clearance gap 	was .25 in and a velocity 

of 30 m/s measured in a vertical plane was attributed to the generation 

of secondary motions within the bowl as the piston moved towards 

TDC. 

Measurements of instantaneous velocity were made by Witze 

(1976a) at the spark plug position in a Wisconsin L-head engine 

(fig. 2.8) with a compression ratio of 7.25:1 and motored at 2000 rev/min 

using a platinum-iridium hot wire operating at 750°C. The cylinder 

pressure, used to calculate the gas temperature (required for 

correction of the hot-wire signal), was measured with a diaphram 

pressure transducer placed in the side of the cylinder head. However, 

a subsequent analysis of the results revealed that the probe mounting 

device had caused interference and the well in which the probe was 

located became charged with gas during the compression stroke which 

was subsequently expelled during expansion, causing spurious velocities 

to be measured by the hot-wire. 

An addendum (Witze, 1976b) indicates peak mean velocities 

during intake (110°  ATDC), compression (20°  BTDC) and exhaust 

(BDC) of 11 m/s, 11 m/s and 7 m/s. The relative turbulence intensity 

remained virtually constant throughout the cycle at a value of 

approximately .5. The micro length-scale varied between .3 mm at 

BDC to .8 mm at TDC, reducing to .3 mm at BDC on the expansion stroke. 

These values are in broad agreement with Semenov (1958), Lancaster 

(1976) and Dent and Salma (1975a, 1975b). 

A comparison between HWA and LDA measurements has been made 

by Witze (1978) in a Wisconsin L-head engine modified for optical 
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access and motored at 600 rev/min. This work is of especial interest 

as it provides a direct comparison, between the two alternative methods 

of velocity measurement in a compressing engine. 

The HWA data were obtained using a platinum-iridium wire, 

calibrated in ambient air for wire temperatures of 350°C and 500°C and 

oriented parallel to the cylinder axis such that it was responsive 

mainly to the tangential (swirl) and radial velocity components, the 

latter being assumed negligibly small. Gas temperature within the 

cylinder was calculated from pressure transducer measurements. 

The tangential velocity component was measured using LDA operated 

in backscatter mode through a quartz window, shown in fig. 2.9. 

Solid particle seeding (NaCl of nominal .6 pm diameter or TiO2  of 

.2 pm diameter) was introduced via the inlet port. 

A comparison between both sets of hot-wire measurements and the 

LDA results is shown in fig. 2.10. Both HWA and LDA data are in 

excellent agreement for both mean and turbulent velocities during 

induction, the maxima being 80 m/s and 10 m/s respectively. At 260°  

crank-angle (80°  ABDC on the compression stroke) the HWA and LDA 

turbulent velocity measurements start to differ, a trend that continues 

until at 20°  ATDC the LDA, HWA (500°C) and HWA (350°C) measurements 

indicate turbulent velocities of 2 m/s, 6 m/s and 12 m/s respectively. 

The mean velocities show a similar trend, although not to such a 

great extent, the corresponding values being 20 m/s, 33 m/s and 40 m/s. 

The difference between the HWA results at different hot-wire operating 

temperatures is indicative of the temperature sensitivity of this 

instrument and Witze has attributed the disagreement to spatial 

variations in temperature caused by flow from the (assumed) cooler 

valve prechamber region or by the proximity of the probe to the cooler 

walls. 
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Main Findings of Experimental Studies  

1. High velocities through the intake valve generate considerable 

turbulence. The wide range of engine configurations and 

probe positions prevents typical values being assigned to 

the mean velocity although the relative turbulence intensity 

is usually about .5 during this period. In simple disc 

chambers, both mean and turbulent velocities decay during 

compression but in engines with a piston bowl or bowl-in-

head, further bulk air movement and turbulence are created 

around TDC. 

2. Intake turbulence is generated within the frequency range 

1 to 5 kHz but during compression there is a downwards 

shift and most of the turbulence energy ends up in 

frequencies below 1 kHz. 

3. Macro and Micro length-scales are found to be in the ranges 1.8 

to 2.2 mm and .2 to .8 mm respectively for a number of 

different engine configurations. 

4. Mean and turbulent velocities increase in an approximately 

linear fashion with engine speed, and are insensitive to 

changes in compression ratio, at least for disc-chamber engines. 

5. Non-directed ports and/or non-shrouded valves produce higher 

cycle-to-cycle variations in air motion than directed 

ports and/or shrouded valves. 

6. At the temperatures and pressures encountered in motored 

engines, HWA requires special care in interpreting the 

signal to avoid erroneous results during the compression 

period: also required is a probe mounting that does not 

cause additional air movement. 
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7. The use of ensemble-averaging in deriving turbulent 

velocities will lead to higher apparent turbulence levels 

being measured than are truly prevailing, due to the cycle-

to-cycle variations appearing as additional 'turbulence'. 

2.3 Studies of Swirl and Squish  

Swirl may be generated within the engine cylinder by virtue 

of the valve being offset from the cylinder axis and/or by suitable 

design of the geometry of the inlet tract. There can be large variations 

in engine performance with different inlet configurations (for the 

same volumetric efficiency) and the full implications of alternative 

induction systems are not too well understood, although the total 

angular momentum input during the intake period, the spatial distribution 

of the incoming tangential velocity, the flow structure generated 

within the cylinder and the inlet turbulence structure are all contributory 

factors. This study (and survey) does not consider the modes of 

generation of swirl but rather its interaction with the in-cylinder flow. 

The term "squish" is applied to the inward radial movement 

of the gas between the piston crown and cylinder head as the piston 

approaches TDC, in engines of either piston-bowl or bowl-in-head 

configuration. (A "reverse-squish" process also occurs as the piston 

commences the downwards stroke after TDC). It is an important aspect 

of the air motion as the bulk air movement and turbulence generated 

by the squish action not only create air motion within the bowl but are 

also responsible for the redistribution of such properties as swirl 

momentum. 
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Studies of Swirl  

In an early investigation of in-cylinder air motion in a motored 

engine with a toroidal-bowl piston, Dicksee (1940) interpreted the 

changes in wet paint markings on piston and cylinder head surfaces, 

caused by the air movement. A recognition of the effects on air 

motion within the piston bowl due to the interaction between swirl 

and squish, an aspect largely neglected by many subsequent researchers, 

is adequately demonstrated by the following quotation from this reference: 

"From these experiments, it appears that when squish alone is the source 

of air movement the air flow in the chamber partakes of a simple 

toroidal movement. The addition of a swirl however, changes the nature 

of the movement and with a swirl of compartively feeble proportions 

the toroidal movement disappears completely and a movement of an 

entirely different nature takes its place". This statement is based, 

in part, upon the observance of an "equator" 	(a horizontal line in 

the paint markings in the bowl), from which Dicksee inferred that a 

double toroidal vortex structure can exist in the bowl when swirl is 

present. As will be shown later, this inference is supported by the 

findings of the present study. 

A method for calculating in-cylinder swirl in engines with axi-

symmetric piston bowls was presented by Fitzgeorge and Allison (1963), 

using a quasi-steady analysis whereby an ordinary differential equation 

for the rate-of-change of angular momentum of the cylinder gas is 

integrated to yield the variation of an equivalent solid-body 

rotational speed over the engine cycle. Surface friction is ignored. 

The instantaneous angular momentum flux through the valve is required 

as an input to the calculation and this information is extracted from 

steady-state measurements of the swirl-generating properties of the 
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valve/port assembly, obtained by blowing air through the port and 

measuring the rotational speed of a paddle-wheel vane anemometer 

mounted in the liner. Results from these calculations show that during 

intake the angular momentum of the cylinder gas increases as a 

result of the inflow, whilst after the inlet valve has closed, 

this momentum is displaced into the piston bowl and the speed of 

rotation increases due to the decreasing equivalent radius of gyration 

of the cylinder/piston-bowl combination, which causes the swirl to 

reach a maximum at TDC. No comparisons with experimental data are given. 

Refinements have been made to the Fitzgeorge and Allison method 

by Dent and Derham (1974), Davies and Kent (1979) and others by 

including the effects of friction using empirical formulae for turbulent 

flow over flat plates. Dent and Derham have presented a comparison 

between results using this approach and hot-wire measurements of swirl 

velocity in a piston bowl for three different engine configurations, namely, 

naturally aspirated and supercharged with a plain inlet valve and 

naturally aspirated with a masked inlet valve. 

The experimental engine had a bore and stroke of 10.16 cm x 10.48 cm, 

compression ratio of 16:1 and a shallow combustion bowl of 5.33 cm 

diameter and 1.2 cm depth. The engine speed was varied between 500 and 

1500 rev/min. The problems of directional ambiguity usually associated 

with the HWA were overcome by using a probe with three mutually perpendicular 

wires and mounted .7 to 1 cm on top of the piston. Pockets were machined in 

the cylinder head to avoid collision at TDC (although Witze's (1976a) 

experience indicates that this practice may introduce spurious 

signals). Additional two-wire probes were mounted on top of the piston 

to measure the squish and swirl velocity components. The relative 

axial velocity between the probe and gas was assumed zero near TDC 

(a reasonable assumption as the probe is mounted close to, and moving 

with, the piston). A total of 5 probes at radii of 1.27, 2.54, 3.18 
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3.49 and 3.81 cm were used. Corrections to the HWA signal for 

pressure and temperature were made using measurements from a 

pressure transducer and a resistance thermometer that utilised one 

wire of a three wire probe. 

Results at 1000 rev/min for the plain inlet valve show that 

for the period 60°  ATDC on intake to TDC of compression, solid body 

rotation exists in the cylinder; this is based on measurements from 

4 of the probes. The combination of naturally aspirated with a masked 

inlet valve (rotated to give the highest swirl) and the plain inlet 

valve with supercharge (1.7 bar manifold pressure) resulted in swirl velocity 

increases of 25% and 60% respectively at TDC. The swirl speed was found to 

increase in an approximately linear fashion with engine speed. The 

predicted swirl speed throughout the cycle, including the "spin-up" 

effect at TDC, was in excellent agreement with the measurements for 

the three test cases examined. 

Anasuma and Obokata (1972) measured and predicted the decay 

of air swirl in an engine with a flat-top piston, the incoming air 

entering tangentially at the cylinder radius through a side-valve. 

The swirl velocity was measured in two ways: firstly, from analysis 

of high speed photography of a high voltage spark discharge between 

two electrodes, and secondly, using HWA. The latter should not 

be relied upon however, as corrections for pressure and temperature 

were neglected*. Spark discharge measurements of the swirl velocity 

* 
Hassan and Dent (1969) and Dent and Derham (1972) have shown 
that in the absence of an experimental calibration at the temperature 
and pressures encountered during compression, not only should a 
semi-empirical calibration, such as that of Davies and Fisher (1964), 
be used but also a further temperature-loading correction based on 
the work of, for example, Hilpert (1933) or Collis and Williams (1959). 
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profile at 3 axial stations have been used to determine the decay 

of swirl momentum. During the period BDC to TDC, decays of 40%, 

60% and 66% were recorded for engine speeds of 1000, 600 and 300 rev/min 

respectively. It can be deduced from the presented profiles that 

the BDC swirl ratios (= swirl speed/engine speed) were 11.4, 17.7 and 

16.8 at these three speeds. There are exceptionally high values, 

exceeding those found in most engines by a 'factor of 2 to 4 and are 

almost certainly due to the odd inlet system used (see e.g. Tindal 

and Williams (1977) for details of the swirl-producing characteristics 

of more typical inlet ports). 

The theoretical aspect of their work involved solving 

numerically the one-dimensional incompressible form of the tangential 

momentum equation for the swirl velocity, allowing for spatial 

variations in the radial direction only but ignoring the effects of 

piston and cylinder head surfaces and all convective transport, i.e. 

zero radial velocity was assumed. The viscosity was fictictiously 

increased above the nominal molecular value to 'account for' turbulence 

and this resulted in a rapid decay of angular momentum. These 

predictions should however be interpreted with caution as no special 

account was taken of friction at the boundaries, except to set the 

swirl velocity to zero. It is difficult to draw any conclusions 

from this work because of the absence of calibration for the HWA 

experiments, the untypical swirl conditions for the spark discharge 

measurements and the unrealistic modelling in the case of the predictions. 

In a subsequent paper, Anasuma and Obokata (1973) have solved 

numerically the two-dimensional stream-function-vorticity formulation 
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of the Navier-Stokes equations for the axial and tangential velocities and 

the radial momentum equation, again assuming incompressible flow. An initial 

solid-body rotation was assumed and calculations were then made of the 

distribution of swirl and stream-function within the cylinder. Turbulence 

was ignored. 

A complementary experiment photographed the movement of aluminium 

powder in a swirling water flow inside a rotating cylinder that was 

impulsively stopped at the start of the experiment. Near the corner 

that would correspond to the piston-cylinder-wall interface, a 

small recirculation was observed at t*= 10.3 (t*is non-dimensional 

time given by t* = tv0/R0  where t = time, v0  is the tangential 

velocity at t = 0 and at the outer cylinder radius, R0). A comparison 

between the photography and predicted lines of iso-stream function 

show the same qualitative trend although the secondary flow occurs 

much earlier (t* = 0.1 to t*= 2) in the latter whilst at t*= 10, the 

predicted recirculation has decayed considerably and is centred at 

r = .6R0  and approximately mid-way between the top (cylinder head) 

and bottom (piston) surfaces. 

As with their previous work (Anasuma and Obokata, 1972) it 

is difficult to draw any conclusions that relate to swirl in engine 

cylinders because the conditions for both their experiments and 

predictions differ too greatly from such flows. 
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Studies of Squish  

Alcock and Scott (1962) reported experiments in which the 

motion of cotton tufts was recorded using high-speed photography 

in a motored engine with a toroidal piston bowl. No evidence of 

squish was found prior to TDC, but this was possibly attributable 

to leakage past the piston which would be considerably greater 

in a motored rather than a fired engine because of higher piston/cylinder 

clearances in the former. However, the results did indicate "a very 

definite outward or reversed squish just after TDC". This reverse- 

squish phenonema is in agreement with the findings of Woods and 

Ghirlando (1975), reported later, and this study. 

The first theory of squish is apparently due to Fitzgeorge 

and Allison (1963) who divided the cylinder into two regions shown 

in fig. 2.11, separated by the line AA. Flow between these regions 

is assumed to be one-dimensional, determined solely by the mass 

continuity requirement, ignoring pressure and density variations within 

the cylinder. Calculations using this approach show that for typical 

bowl-in-piston geometries, the squish velocity reaches a maximum between 

8°  BTDC to 2°  BTDC and increaseswith reduction in both TDC clearance 

and radius of the piston bowl. Fig. 13 of appendix 4 shows a typical 

variation of squish velocity near TDC. 

Dent and Derham (1974) and Derham (1972) have measured squish 

velocities using HWA in the experiments previously described in the 

"Studies of Swirl" section. Predictions of squish velocity using 

the Fitzgeorge and Allison method are in good agreement with the 

measurements before TDC for 3 engine speeds of 500, 1000 and 2500 rev/min 

with maxima of 8, 17 and 27 m/s. At TDC however, the measurements 

show values of 12, 23 and 34 m/s whilst the predictions are zero. The 
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reason for this discrepancy is not stated, although it is possible 

that air movement caused by the wells machined into the cylinder head to 

accept the probes are responsible. 

Shimamoto and Akiyama (1970) investigated both experimentally 

and theoretically the effects on the squish velocity of both heat-

transfer and leakage past the piston. The measurements were made in 

an engine of 16:1 compression ratio with a bore and stroke of 

85 mm x 93 mm with two variants of piston bowl, shown in fig. 2.12,and 

with TDC clearances of 1 mm and 2.5 mm. The squish velocity 

was calculated 	from the change in inductance of a solenoid with the 

movement of .4 mm diameter needle passing through its centre, the movement 

resulting from the deflection of a thin plate normal to the flow 

direction and sensitive to the dynamic pressure. This apparatus is 

shown in fig. 2.13. A major criticism of the experimental method is 

that the probe was shielded by the side of the bowl during the important 

period 15°  BTDC to TDC. Their measurements show the peak squish velocity 

to occur at 18°  BTDC which is almost certainly in error, as measurements 

from other sources (e.g. Woods and Ghirlando (1975)) and predictions 

of various degrees of sophistication show the maximum at least 10°  

nearer to TDC. By taking measurements at axial positions of 1.2, 1.9, 

3 and 4 mm, a (hypothetical) radial velocity at the piston surface 

was estimated from spatial extrapolation (although it would be expected 

that the true value is zero actually at the surface). Subsequent 

results, which use this extrapolated value, show the peak squish 

velocity to occur at about 8°  BTDC although it is not obvious how this 

shift of the peak occurs if, as stated, the probe was shielded by the 

piston during the last stages of compression. 
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The effect of gas leakage on the squish velocity was 

estimated in the following way: it was assumed that the instantaneous 

leakage past the piston could be calculated according to an isentropic 

orifice relationship for sonic flow (see equation 4. 62) ) and that 

subtraction of the leakage mass flow rate from the mass flow rate 

out of the clearance volume into the piston bowl calculated from the 

continuity requirement (as in the Fitzgeorge and Allison (1963) 

method) gave the net mass flow rate through the plane AA in fig. 2.11. 

The sonic flow orifice equation requires a value of effective area 

and this was obtained by matching the solution of this equation, which 

when integrated over a cycle would give the leakage per cycle, with 

measurements (presumably from blowby data, although this is not stated). 

The leakage volume per cycle at 1500 rev/min was found to be 1.6% 

of the swept volume and the decrease in maximum.  squish velocity was 

subsequently calculated as 1% for this leakage rate increasing to 

about 3% for a leakage of 2.5%. 

The model used to investigate the effect of heat transfer 

on the squish velocity assumed that cooling of the gas during 

compression in the two regions separated by the line AA in fig. 2.11 

(hatched and unhatched zones) may be determined independently from 

a calculation of the heat transfer through the surfaces bounding each 

zone. Thus, the increased cooling of the hatched zone gas as the 

piston approaches TDC, that results from the higher surface area/volume 

ratio, serves to decrease the squish velocity than would be obtained 

under either adiabatic conditions or uniform cooling of the'total 

cylinder gas. The heat transfer coefficient was calculated according 

to Woshni's equation (Woshni, 1967) and was assumed the same for both 

regions. The instantaneous pressure and temperature, required to 
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evaluate the Woschni equation, were computed from a polytropic relation- 

ship(pVn  = constant). At 1500 rev/min the decrease in maximum squish 

velocity due to the differential heat transfer was calculated as 6% 

and variations in the TDC clearance of 1 mm to 2.5 mm and piston bowl/ 

cylinder diameter ratio of .45 to .55 produced negligible changes in 

this value. 

A comparison between the plate deflection measurements, described 

earlier,and the calculated squish velocity with both leakage and heat- 

transfer effects included shows good agreement for both piston bowls with 

a 1 mm TDC clearance and for the .55 bowl/cylinder diameter-ratio configuration 

with 2.5 mm clearance. These values are generally 7-10% lower than the 

value calculated without losses. This conflicts with the measurement- 

theory comparisons of Dent and Derham (1974) who found equally good 

agreement although neglecting losses. 

Woods and Ghirlando (1975) have presented a more comprehensive 

theory that those already cited for the calculation of squish velocity 

that includes the effects of: 

(i) leakage past the piston, 

(ii) heat transfer, 

(iii) friction at the cylinder head and piston surfaces, 

(iv) gas inertia, 

(v) a sloping piston crown and 

(vi) the inclusion of the 'dead' volume between the top 

ring and piston crown. 

This was achieved by solving simultaneously the unsteady one-dimensional 

continuity, momentum and energy equations in the annular gap between 

the piston crown and cylinder head. The effect of skin friction at 

the walls was included in the analysis as a body force characterised 

by a coefficient of friction, as is the practice for pipe flow, and 

whilst the heat transfer modelling was unspecified it was stated 
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that both terms had negligible influence and all results presented 

exclude them. A partially open boundary at the outer radius allowed 

for leakage past the piston. 

Predictions of squish velocity at 6000 and 12000 rev/min, 

a 0.5 mm TDC clearance gap and without leakage are in agreement with 

the simpler Fitzgeorge and Allison (1963) method at the lower speed 

with only minor differences at the higher speed. One fundamental 

difference between these alternative models however, is that the more 

sophisticated Woods and Ghirlando analysis predicts a non-zero velocity 

at TDC as a result of the gas inertia (although not large enought to 

account for the high velocities measured by Dent and Derham, 1974). 

Variations in the leakage gap from 0 to 0.5 mm showed a strong influence 

on the squish velocity when compared with the no-leakage calculation. 

A 0.1 mm gap reduced the maximum velocity by a factor of 3 and reversed 

the direction between 6°BTDC to TDC. It is however difficult to relate 

a leakage gap to engine conditions unless the leakage flow rate is 

integrated over a complete engine cycle and compared with measured 

leakage data (as Shimamoto and Akiyama, 1970). 

A complementary experimental program used HWA to measure 

the squish velocity in both flat-top and piston-bowl configurations 

(fig. 2.14). The probe was located at a radius of 25.4 mm (bowl radius) 

and various axial depths of .51, 1.78, 3.05 and 4.32 mm. Gas pressure 

and temperature, for correction of the HWA signal, were measured with 

a piezo-electric transducer and a resistance thermometer. 

With the flat-top piston, both theory and experiment 

gave negligible squish velocities (< 2 m/s) at all probe depths for 

the period 60°  BTDC to 60°ATDC at 1000 rev/min. However, at 2500 

rev/min the measurements show considerable scatter after TDC with a 
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maximum 'velocity of 30 m/s, attributed to the generation of a corner 

vortex. The presence of a bowl increased the velocities, with maxima 

of 9 m/s and 32 m/s measured after TDC for a 0.5 mm bumping clearance 

and speeds of 1000 and 2500 rev/min. The activity detected by the 

HWA after TDC with the flat piston at 2500 rev/min was apparent at 

all speeds with the bowl geometry, plausibly attributed to reverse 

squish. The calculated values of squish velocity were generally 

higher than those measured by a factor of 2 to 3. The reason for this 

discrepancy is not known. 

Main findings of the studies of swirl and squish  

1. Swirl is generated by the intake process and persists throughout 

the engine cycle. 

2. Although the momentum of the gas decays after IVC due to wall 

friction, the swirl speed in a combustion chamber of smaller 

diameter than the cylinder increases during the compression 

stroke because of the decreasing equivalent radius of gyration 

of the cylinder-bowl combination. 

3. The interaction of swirl and squish can dramatically alter the 

flow structure near TDC of compression. 

4. Relatively simple models, aided by steady flow data of the 

swirl-producing characteristics of the inlet assembly, are 

reasonably successful in predicting the variation of an equivalent 

solid-body rotational speed of the gas through the engine 

cycle. 

5. The squish phenomena in engines with combustion bowls is 

confirmed by a number of experimentalists and there is also 

some evidence of a reverse squish effect after TDC. 
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6 	Calculation of the squish velocity based upon two alternative 

models, one requiring the satisfaction of the continuity equation 

and the other satisfying continuity, momentum and energy for 

the one-dimensional flow in the clearance gap, indicate that 

the effects of gas inertia are negligible for engine speeds up 

to 6000 rev/min. 

7. Comparisons between these models and experimental squish velocities, 

and, estimates of the effects of both heat transfer and leakage 

past the piston are conflicting. It is not known whether this 

is due to inadequacies of the theoretical models or measuring 

inaccuracies. 

2.4 Experimental Studies in Axisymmetric Engines  

Measurements in axisymmetric idealisations of real engines 

are useful in providing a means of validating predictions from the 

model described in this thesis. Three such sets of data of adequate 

quality appear to exist and are described below whilst detailed 

comparisons between predictions and experiment are left until 

Chapter 5. 

Witze (1976c) has made HWA measurements in a specially 

constructed axisymmetric engine operating on a 4-stroke cycle by 

using a central cam-operated valve serving for both intake and 

exhaust. Two variants of the engine are considered here, shown 

in fig. 2.15, both having a flat-topped piston and in one case a 
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flat cylinder head and in the other, a bowl-in-head configuration, 

formed by introducing an annular insert between the head and block. 

The hot-wire probe, oriented to measure the resultant of the axial 

and radial velocity components, was positioned .75 ins and .47 ins 

from the symmetry axis and the cylinder head surface as indicated. 

Although the probe was located well away from any surface, so avoiding 

wall-proximity effects, the data suffer from the same temperature 

sensitivity and calibration uncertainties of Witze's earlier measure-

ments. The original data, with which complementary predictions were 

published by the author and others (Gosman et al, 1978b)and presented 

in section 5.3, were subsequently corrected by Witze (1979). 

The original and corrected data for the flat cylinder head 

case are shown in fig. 2.16. The revised data shows a peak inlet 

velocity of 42 m/s and a corresponding turbulent velocity of 19 m/s 

at the mid-stroke position. The probe position is immediately 

downstream of the inlet valve, and these values reflect the jet-like 

nature of the incoming flow. Both velocities decrease during the 

remainder of induction with only a slight rise prior to TDC during 

compression. The difference between the original and corrected data 

during compression is similar to the HWA-LDA comparisons of 

Witze (1978) and underline the uncertainties of HWA correction methods 

during compression. The revised data are more plausible, on the 

basis that there are no geometric features to promote substantial 

bulk air motion and other experimental evidence indicates a decay 

during compression for this type of chamber. The velocity decay 

continues through expansion until just before BDC in the exhaust 

stroke when there is a steep rise in the mean velocity to 20 m/s with 

a corresponding turbulent velocity of 2 m/s. The turbulence values 

are lower than those found during intake because the probe is now 
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located in the upstream region of the valve outflow, and as will be 

seen in section 5.3 where the predictions for this case are described, 

the turbulence generation is localised at the valve orifice. 

The uncorrected data for the bowl-in-head configuration 

(corrected data are not available for this case) are shown in 

fig. 2.17. There is a similar trend to the no-bowl geometry during 

intake with 	maximum mean and turbulent velocities of 40 m/s and 

19 m/s. During compression, the indicated peak mean and turbulent 

velocities are 65 m/s and 35 m/s although bearing in mind the difference 

between the uncorrected and corrected data for the previous case, 

these maxima should be disregarded. The exhaust period shows an 

initially oscillatory behaviour for both quantities, and as 

• will be seen later, this is a result of reverse flow into the cylinder. 

After BDC on the exhaust stroke, the behaviour is similar to the disc 

chamber. 

Morse et al (1978) have used an axisymmetric engine with a 

glass cylinder for making detailed in-cylinder velocity measurements 

using LDA. Although non-compressing, the engine can be operated 

with different cylinder heads so that the effects of alternative 

inlet configurations can be studied. Results have been reported 

for an open pipe inlet (Watkins (1977), Yianneskis (1977) and 

Gosman et al (1978c))and a permanently-open poppet valve, the base 

of which is flush with the cylinder head (Yianneskis (1977) and Morse 

et al (1978)). Variants of the basic geometry also include vanes 

inserted in the inlet to give the incoming air a pre-swirl and a 

piston with a simple cylindrical bowl. The important dimensions 

of the engine are given in fig. 2.18 and the results described here 

have been obtained at 200 rev/min with the valve inlet as shown. 

Mappings in the cylinder of the ensemble average Vn(g) and rms 

1 /2  turbulent v1 (0) 	velocities have been derived from the measured 
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instantaneous velocity v(e). For measurement purposes, the crank-

angle represented by 0 is an interval of finite-size (0 -6W2 to 

e + Se/2). 	The choice of Se, is of necessity a compromise between 

accuracy which demands Se as small as possible and data acquisition 

rate which requires Se large and its influence on the results has 

been quantified by Morse (1977). This work shows that, for the 

applications considered, the mean velocities are only slightly 

affected with variation in Se within the range 1°  to 30°  but the 

turbulence levels are substantially over estimated when the rate-of-change 

of mean velocity is high for large 6e(>10°). The measurements reported 

here have been made with Se = 10°. 

The results are plotted in the form of profiles of axial 

velocity, turbulence intensity, and where appropriate, swirl velocity 

at various axial stations, and streamlines. The more detailed profiles 

are presented in section 5.2 and are used for a quantitative comparison 

with predictions obtained using the method described in this thesis. 

The streamlines provide an overall view of the flow structure and 

are described below for two configurations with a flat-top piston 

both with and without inlet swirl vanes. 

Measurements without swirl  

Fig. 2.19 shows experimentally-derived streamlines for 4 

crank-angles during the cycle. At 36°, the intake process is well 

established and two entrainment eddies are formed either side of the 

incoming jet. The main recirculationg in the cylinder seems to 

effect the angle of inflow such that at 90°  the jet has a higher 

radial velocity component than suggested by the valve entrance angle. 
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The corner vortex is reduced in size, probably as a result 

of the higher intake velocities at this time which also cause the 

air to impinge on the cylinder wall. The deflection of the intake 

jet at the wall results in a further small eddy forming above the 

piston. This trend continues and at 144°  this weak eddy has increased 

in size whilst the main recirculation fills over half the cylinder. 

During expansion, at 270°, the intake-induced structure has disappeared 

and a sink-like flow is observed. 

Measurements with swirl  

Measurements have been taken with inlet vanes angled at 15°  

and 30°  to the axis of the cylinder. The higher pre-swirl case (30°  vanes) 

was found to have the more dramatic effect on the flow and is reported 

briefly here. Fig. 2.20 shows the streamlines for this case. At 36°  

the flow is similar to the no-swirl configuration in respect of the two eddies 

either side of the jet but an.additional weak eddy has also formed 

behind the valve. At 90°, the structure varies considerably from the 

no-swirl counterpart in that the main recirculation is distorted both 

behind the valve due to the aforementioned additional eddy and near 

the piston. The wall vortex, previous apparent as a result of jet 

impingement, is not formed. The picture at 144°  is similar to that 

at 90°  although "stretched" by the piston motion. The flow at 270°  

is nearly identical to the no-swirl case, the intake-induced motions 

having been suppressed. 
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Heat Transfer  

Dao (1972) and Dao et al (1973) have reported measurements 

of instantaneous heat flux at 4 radial locations on the cylinder 

head surface in a motored engine with both disc-chamber and cylindrical 

piston bowl geometries. The measuring positions and bowl shape are 

shown in fig. 2.21. The objective of this work was to investigate 

the influence of gas motion on the heat flux, the former being 

determined by the shape of the piston and the inlet swirl level, which 

was generated using a masked valve. 

The experimental engine was a single cylinder Fairbanks-Morse 

diesel of 3.125 ins bore and 4 ins stroke giving a total piston 

displacement of 30.7 in3. The inlet was connected to a pressurised 

tank so that the engine could be supercharged up to 1.4 bar. The 

cylinder head was modified to accept a valve containing the heat flux 

measuring assembly, the other valve being used for both intake and 

exhaust. Strictly, this violates axial symmetry and it is possible that 

some features evidencedin the measurements are due to three- 

dimensional effects. 	Instantaneous gas temperature measure- 

ments were made using a pair of thin thermistors deposited 

on both faces of a pyrex disc of .00511 ins thickness and 

.375 ins diameter. The resistance variations of the thermistors were 

measured using two Wheatstone bridges, the outputs of which were fed 

to an electrical analog simulating the thermal properties of the disc. 

Measurement of the current through the first resistor of the analog 

circuit gave a signal proportional to the instantaneous heat flux. 

Results with a disc chamber showed strong influence of the 

gas motion on the heat flux. For weak swirls with an unshrouded 

valve, the heat fluxes were irregular and showed large cycle-to-cycle 
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variations. For strong swirls (IVC swirl ratio of 7.3), two flow 

regimes were inferred to exist adjacent to the cylinder head surface: 

in the annular region extending from .8 ins to 1.46 ins radius, the 

heat flux traces were less spiky and reproducible from cycle-to-cycle, 

thus indicating a regular gas motion, whilst in the central region, 

cycle-to-cycle variations were apparent, indicating large cyclic 

variations in the gas motion (Tindal et al (1974) found similar cycle-

to-cycle variations for weak swirls). 

Fig. 2.22 shows the variation of heat flux at the 4 measuring 

positions during the period 60°  BTDC to 60°  ATDC with the cavity 

piston, an IVC swirl ratio of 7.3 at 900 rev/min and manifold pressure 

of 1.36 bar. These indicate maxima near TDC with irregularities 

probably resulting from squish induced effects. The presence of 

a piston bowl enhanced the heat fluxes by about 25% in the annular 

region, 100% at the outer radius of the bowl and about 10% in the 

central zone when compared with the disc chamber results, as shown 

in fig. 2.23. 

2.5 Multi-Dimensional Theoretical Studies  

The first attempt to devise a multi-dimensional prediction 

scheme for the flow induced by a piston reciprocating within a cylinder 

was that of Watkins (1973) who solved numerically the governing 

differential conservation equations of mass, momentum and energy. 

The Eulerian form of the differential equations was transformed into 
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a co-ordinate frame that allowed the finite-difference grid used for 

their solution to expand and contract in the axial direction so that 

the cylinder head and piston surface coincided with the first and 

last axial grid lines respectively at all times in the cycle, thereby 

improving resolution at TDC than would otherwise be obtained with a 

more conventional fixed grid arrangement. The transformed differential 

equations were cast into fully implicit finite-difference form, so 

avoiding the 'Courant-Friedrichs-Lewy' (CFL) stability requirement 

(Courant et al, 1967). Cell Reynolds Number restrictions were removed 

by using a hybrid of donor cell (upwind) and central differencing 

to approximate the spatial derivatives. Axial symmetry was assumed 

and there were no ports or valves. 

Results for compression and expansion of the gas with initial 

conditions of zero velocity and a uniform pressure field show the 

formation of an annular vortex as the piston moves towards TDC, which 

is a consequence of the build up in pressure towards the cylinder 

head and the action of shear stresses in retarding the fluid adjacent 

to the cylinder wall. The vortex persists even when the piston comes 

momentarily to rest at TDC but the flow very quickly reverts to nearly 

one-dimensional behaviour during expansion. 

Gosman and Watkins (1976a,1976b) have incorporated a turbulence 

model into the above procedure that solves two additional differential 

equations for the kinetic energy (k) and the dissipation rate (c) of 

the turbulence. Heat transfer predictions were compared with the 

empirical correlations of Elser (1954), Annand (1970) and Woschni (1967) 

and the effects of engine speed, compression ratio and bore/stroke 

ratio were investigated for a closed cylinder configuration. Comparisons 

between predictions from the RPM (an acronym of Reciprocating Piston 

Motion) method and the empirical correlations showed the Nusselt 
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Number derived from the former to be below the latter by a factor 

of two, plausibly attributed to the higher turbulence levels generated 

by intake, squish and combustion found in the engines from which 

the empirical correlations were derived. It was also observed that 

the spatial variation of gas temperature at certain periods of the 

cycle could allow heat fluxes of opposite sign to co-exist, indicating 

that heat transfer estimates based upon a bulk-mean gas temperature 

could be grossly in error on occasions. An increase in engine speed 

from 2000 to 3000 rev/min resulted in a two-fold increase in heat 

transfer rate although with a reduction in speed the changes were not 

so dramatic. Similarly, increases in compression ratio from 10:1 to 

14:1 and 14:1 to 18:1 produced a 50% increase in heat-transfer rate 

in each case. Variations in the bore/stroke ratio of .8, 1. and 1.2 

showed negligible change in predicted heat transfer rates. 

Gasman and Watkins (1976b) have also made predictions using 

the above-described method for a motored engine equipped with a single, 

centrally-located valve represented by an annular opening, the area 

of which was allowed to vary in a realistic fashion, so permitting 

the simulation of intake and exhaust. A boundary condition of pressure 

was prescribed in the port, from which the mass flow rate was calculated 

using an orifice relationship. The incoming air was assumed to enter 

the cylinder at a prescribed angle to the cylinder head and values 

typical of engines were assigned to the upstream turbulence quantities 

and temperature during intake. 

A strong recirculation was found to develop soon after the 

start of the intake stroke which remained during compression, although 

reduced in strength as a result of wall friction. After TDC the vortex 

was quickly supressed and a virtually one-dimensional flow remained 

until EVO. A sink-flow structure was apparent for the entire exhaust 

stroke. The turbulence at a position near the valve showed high values 
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during intake as a result of the shear between the entering jet 

and the fluid already in the cylinder. As the recirculation region 

was established, the jet-generated turbulence was transported by 

convection and diffusion and maximum values were then found near the 

centre of the vortex whilst the level near the symmetry axis was 

low. It was observed that the turbulence energy diminished at a much 

slower rate than the mean velocity, evidenced by high values of intensity 

around TDC of compression. During exhaust, turbulence was again 

generated by shear near the valve although the effect was localised 

due to the outward movement of the fluid. The peaks during intake 

and exhaust were of comparabable size. Heat-transfer during compression 

and expansion was found to be about twice that predicted for a cylinder 

with no valve. 

Watkins (1977) has made predictions for both laminar and turbulent 

flows in a non-compressing engine and compared them with experimental 

data. For the latter, LDA measurements were made in the plexiglass-

cylinder engine already described (Morse et al, 1978) at an engine 

speed of 10 rev/min and with a central, open-pipe inlet. The peak 

Reynolds Number at the inlet was of the order 640 and the flow was 

considered both laminar and incompressible; a consequence of the latter 

is that the inlet mass flow-rate may be calculated from the piston 

displacement. Boundary conditions for the axial and radial velocity 

distributions at inlet, which closely determine the form of the incoming 

jet and consequently the flow structure within the cylinder, were 

obtained from two sources: experimental profiles were used for the 

axial velocity, but the radial velocity could not be measured and 

the profiles during intake were therefore assumed to follow those 

predicted during exhaust, the latter being "fed-back" during the 

subsequent induction stroke. 
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A comparison between the predictions and measurements shows 

that the main features of the flow, that is, the spread of the jet 

near the piston and a recirculation zone along the cylinder wall are 

reasonably well predicted (typically -25% to + 8% error in axial velocity 

in the case of the jet), but the weaker motions, specifically a small 

eddy apparent in the experimental data in the corner of the cylinder 

head/wall is not predicted at all. This is attributed to errors 

in the strong recirculation,arising from uncertainties in the inlet 

conditions, 	having a significant effect on the weaker regions of 

the flow. 

Comparisons have been made for the mean and turbulent velocities 

at a position close to the single central valve with the experimental 

data of Witze (1976c) for the flat cylinder head case, described 

in section 2.4. Fig. 2.24 shows the predicted and experimental mean 

and turbulent velocities for this case and whilst the comparisons 

could not be described as good, the trends during inlet and exhaust 

are similar (Note that the peaks of both velocities during compression 

for the experimental data are incorrect for reasons previously given, 

Fig. 2.16 shows the amended results). This particular example should 

not however be used to judge the performance of the predictive method 

as there are differences between the experimental and theoretical 

"engines" of bore/stroke ratio, compression ratio (1 and 14 

respectively for the predictions and, .92 and 10.7 for the experimental 

engine) and valve geometry, the Witze engine having a moving poppet 

valve and the predictions representing the flow as entering through 

an annulus in the cylinder head as described earlier. Predictions 

in the present study for the same case are presented later in this 

thesis using the correct dimensions and a more realistic treatment 
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for the valve which confirm that theaforementioned inconsistencies 

affect the quality of the results. 

An early variant of the computer code developed by Watkins has 

been used by Chong et al (1976) who have reported flow and heat transfer 

predictions in an axisymmetric engine assuming laminar flow conditions. 

The flow induced by both a flat-topped piston and a simple cylindrical 

cavity in the piston have been simulated, in the latter case by "masking" 

a portion of an expanding/contracting grid; this latter method 

unfortunately results in a piston bowl whose depth varies with piston 

position. A coarse (10 axial x 5 radial) computational grid was used. 

The engine speed was varied between 10 and 1000 rev/min and the 

compression ratio between 6:1 and 13:1. 

At engine speeds below 100 rev/min with the flat-topped 

piston configuration, a toroidal vortex was observed during compression 

which was subsequently suppressed during expansion; this compares 

favourably with the motions predicted by Watkins (1973) for similar 

circumstances. At higher speeds, a (nearly) one-dimensional axial 

flow was found during compression and expansion. The heat transfer 

predictions will not be discussed for two reasons: firstly, studies 

by Watkins (1977) indicate that the 10 x 5 grid used is inadequate 

to calculate wall heat transfer (20 x 20 has been found to be the 

absolute minimum) and secondly, Chong et al appear to have made 

an error in obtaining the heat transfer rates from the predicted 

temperature. 

It is also difficult to draw any conclusions from the above 

author's piston-bowl predictions because of the coarseness of the 

grid and the time-varying dimensions of the bowl. All that can be 

stated is that the direction of rotation of the squish induced 

recirculation in the bowl at TDC is opposite in sense to that found 
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in the present work for a similar geometry (Gosman and Johns, 

1978a). 

Griffen et al (1976) have obtained numerical solutions 

to the Navier-Stokes equations in a plane two-dimensional piston/ 

cylinder arrangement. An identical co-ordinate transformation to 

that of Watkins (1973) was used to cast the partial differential 

equations for continuity, momentum and thermal energy into the more 

flexible expanding/contracting co-ordinate frame already mentioned. 

A turbulence model was not included. The complete 4-stroke cycle 

has been simulated, although the valve representation is relatively 

crude, using only 1 grid point in the cylinder head for inhaling and 

expelling fluid and assuming that the 'valves' are of fixed area and 

open and close instantaneously at BDC and TDC. Spatial resolution 

within the cylinder is limited due to the coarse (10 axial x 9 radial) 

finite-difference grid. 

A variant of the time-dependent, predictor-corrector scheme 

of MacCormack (1969) was used to solve the non-conservative form of 

the governing equations. The explicit nature of this scheme requires 

the time-step (St) to satisfy the CFL stability criterion(Courant 

et al, 1967), i.e.: 

St < (  Sx 	) 
vf +va min 

 

where Sx is the grid spacing and of  and va  are respectively the local 

fluid and sonic velocities. The implications of the CFL time step 

limit are discussed in section 4.5 . A further limitation and a 

severe constraint on the size of geometry and operating condition also 

arises from the central differencing practices employed for spatial 
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derivatives. In this case, numerical stability and accuracy requirements 

dictate that the cell Reynolds number (Re) should remain of the order 

unity, i.e. 

pvf6x  
Re - 	 - 1 u 

where p and p are respectively the fluid density and viscosity. 

The fore-mentioned authors have chosen to satisfy this latter criteria 

by specifying a 'thimble-sized' engine (8mm bore x 9mm stroke) and 

an ambient pressure of 0.01 atmosphere: the time step then required 

to satisfy the CFL condition is of the order .02°  crank angle. 

Flow-field predictions with the cell Reynolds number 

restriction ignored (Re = 10,000) are presented at various stages 

throughout a 4-stroke cycle but numerical instabilities are apparent 

in the solution in the form of an oscillatory velocity field as a 

consequence. As a result of these instabilities, little can be 

deduced from the results except that the flow is nearly one-dimensional 

in regions away from the boundaries during compression and expansion. 

In a companion paper, Diwakar et al (1976) have solved 

the inviscid"form of the governing equations, so removing the cell 

Reynolds number restriction but otherwise using the same numerical 

method and grid arrangement as Griffen et al (1976). In this instance, 

normal ambient conditions of pressure and density are assumed and 

the engine is "full-scale" although the bore and stroke are not stated. 

The engine speed is 600 rev/min. 

Calculations were started at TDC of the intake stroke and 

the incoming air entered with only an axial velocity component. By 

the mid-stroke position, a single vortex was formed and this structure 

persisted throughout compression until TDC at which time it was 

"squashed" due to the reduced piston/cylinder head clearance. Recirculation was 

suppressed during the early stages of expansion although at BDC the 
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single vortex was again apparent. At 20°  ABDC, with the 

exhaust valve open, the vortex had reversed in direction and flow 

was directed towards the exhuast valve. At the end of the exhaust 

stroke (TDC), the authors have interpreted the flow structure as having 

recirculation zones in the corners, although the coarseness of the grid 

precludes a proper assessment. Unfortunately, the plots of the velocity 

fields are scaled according.to the maximum value at each time-step and it is 

therefore not possible to deduce either if, or by how much, the strength 

of the vortex decreases during compression and expansion when both valves are 

closed. However, in view of the neglect of turbulence, a slip boundary 

condition (in conformity with the inviscid assumption) and a coarse grid 

and valve representation it is doubtful whether these results mirror reality. 

A comparison has also been made by Diwakar et al between 

the flow field predictions from the viscous calculations of Griffen 

et al (1976) and those assuming inviscid flow. These results are 

interesting in that they represent two limiting assumptions of high 

(Re 	1) and zero viscosity respectively. The two structures are very 

different, the former depending largely on the piston motion and being 

essentially one-dimensional during compression whilst the latter shows 

a single dominant vortex. Neither assumption is realistic although 

the flow resulting from the zero viscosity (infinite Re) calculations 

is probably closer to a turbulent flow, as it would be expected that 

the latter is relatively insensitive to Reynolds number. However, 

the neglect of turbulence, where the stresses arising from molecular 

viscosity are augmented by additional turbulent stresses, is not 

justified. 

Three-dimensional inviscid flow calculations in an engine 

cylinder have been made by Griffen et al (1978) using the same numerical 

method as Griffen et al (1976) and Diwaker et al (1976) but with a 

cylindrical-polar co-ordinate system. It was found that an additional 
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artificial viscosity term was needed in the momentum equations to 

avoid numerical instabilities. A computational grid of 10 (axial) x 

15 (radial) x 9 (circumferential) grid lines was used with inlet and 

exhaust valves represented by 3 (radial) x 3 (circumferential) grid 

lines each. The valves were diametrically opposed and the resulting 

symmetry required calculation in only half ('R radians) of the cylinder. 

Both radial and swirl velocities were specified as zero at the valve. 

The velocity field in the axial -radial plane of the 

valves is similar to the structure found in the two-dimensional (plane) 

calculations of Diwakar et al (1976) and the intake-generated recirculation 

persists until TDC of compression. The magnitudes of the velocities 

in the radial-circumferential plane are stated to be considerably lower 

than those in the axial-radial plane (which would be expected with 

a zero swirl boundary condition at the valve) although different velocity 

scalings preclude a quantitative comparison. 

Boni et al (1976) have made predictions of the flow and 

combustion of methane in an axially symmetric divided-chamber stratified 

charge engine. The Arbitrary Lagrangian-Eulerian (ALE) numerical 

method of Hirt et al (1974) was used to solve conservation equations 

for 5 species, momentum (axial and radial) and energy. 

Considerable flexibility of geometry is possible with the 

ALE method and a partially-implicit formulation of the governing 

equations allows flows of all speeds to be computed without the CFL 

time-step restriction. However, there remain a number of restrictions 

on the maximum allowable time-step (St), that result from the explicit 

flux treatment of the scheme. These are: 

-1 
St<min{~( 	

+ 
S 

) 1 	f 1/z, f 
vr 

Sz 	r 	1 	2 
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where v is the kinematic viscosity; Sz, Sr and v1 ,v2  are respectively 

the grid spacings and velocity components in the axial and radial 

directions and f - 2  2 where ao  is a measure of the donor-cell 
1+ao  

proportion in the finite-difference formulation of the mass conservation 

equation (ao  = 0 and a0  = 1 correspond to central and donor cell 

differencing respectively). 

A further consequence of the differencing practices 

employed is that adjacent nodes may become decoupled under certain 

flow conditions (Amsden and Hirt, 1973). This results in two (nearly) 

independent solutions for adjacent grid lines and is manifest as a 

spatially oscillatory solution. In the case of the momentum equations, 

oscillations appear in the velocity field and these are apparent in 

the predictions of Boni et al adjacent to the cylinder wall. Although 

the authors are unsure whether this phenomena is of numerical or 

hydrodynamic origin, similar behaviour has not been observed either 

experimentally or theoretically in engine cylinders by other researchers 

and the evidence indicates the former. 

The fore-mentioned hydrodynamic oscillations are not 

apparent in a later publication (Boni, 1978) where an improved differencing 

scheme (the scheme itself is not stated) has been incorporated into 

the same computational procedure as Boni et al (1976). Predictions using this 

method of the flow in a Honda CVCC prechamber engine at 6000 rev/min are shown 

in fig. 2.25 at TDC of compression.A grid of 25 axial x 10 radial lines 

was used and turbulence was not included. Fig. 2.25 shows a quite 

plausible behaviour with single vortices in both pre and main chambers. 

The authors state however, that the latter vortex is greater' in size 

than that observed by Tabacznski et al (1970) or Daneshyar et al (1973) and 

this is attributed to numerical errors introduced by the coarse grid 

adjacent to the boundary. 
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Calculations of the flow and heat transfer in a prechamber 

engine geometry have also been made by the author and described by 

Gosman et al (1979). In this instance, a plane two-dimensional ideali-

sation was used to represent the three-dimensional 'Howerd' 

chamber geometry. 	The applicability of this idealisation 

is clearly open to question, but it is possible that the results 

may be at least qualitatively correct. The governing equations 

were solved in a general curvilinear orthogonal coordinate frame 

using the computational grid shown in fig.2.26. The grid was obtained 

using the methods described in appendix 1 . 

Figs.2.27 and 2.28 show respectively the predicted velocity 

and turbulence intensity fields during the compression and expansion 

phases, starting with the fluid at rest. These calculations roughly 

simulate a motored engine of 10:1 compression ratio operating at 

1500 rev/min. 

At 30°  ABDC the motion in the main chamber is essentially 

one-dimensional apart from where the flow contracts into the prechamber 

throat, while in the prechamber itself it simply expands again. The 

turbulence levels at this stage are very low and are not plotted. 

By mid-stroke (90° ATDC) however the inflow to the prechamber is 

much stronger and separates at the throat walls to form two eddies 

on either side of the jet, the lower one being the larger of the two. 

Turbulence generation is particularly strong in the shear layers of 

the throat as is signalled by the maximum value of 0.8 occurring adjacent 

to the entry lip. 

Substantial increases in both velocity and turbulence levels 

are apparent by 30°  BTDC where the lower eddy has enlarged and a 

small eddy has appeared in the main chamber. By TDC however the pre-

chamber contains just one eddy and the turbulence has decreased, both 

effects presumably being a consequence of the gradual reduction in the 

inflow rate as the piston approaches the top of the stroke. 
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As the piston descends, the prechamber structure quickly 

alters to one of a simple sink flow, as shown by the results for 90°  

ABDC. The outflowing gas enters the main chamber in the form of ajet 

which entrains the surrounding fluid and impinges almost normally 

onto the piston, producing appreciable turbulence in the process. 

By BDC the jet has produced a large eddy which fills the main chamber 

space, while inertia effects have caused a small vortex to appear 

in the prechamber. The general level of turbulence has decayed 

due to the smaller shearing rates prevailing. 

Calculations of the flow and combustion in a divided-chamber 

stratified-charge engine have been made by Syed and Bracco (1979), 

the purpose of which was to assess the applicability of a two-equation 

turbulence model to the combustion process. The computationswere 

divided into three stages, namely: (1) compression after IVC to 

ignition, (2) ignition to the end of combustion and (3) the end of 

combustion to EVO. During periods(1) and (3) the flow properties were • 

assumed uniform but different in the prechamber and mainchamber, thus, 

the integration of ordinary differential equations (odes) yielded the temporal 

variations of mass, temperature and pressure. During period (2), 

partial differential equations for mass, momentum, energy, species, 

turbulence energy (k) and turbulence energy dissipation rate (e) were 

solved to give the spatial (2-d) and temporal variation of the flow 

properties. 

At the time of ignition the velocities were assumed zero and 

values of species mass fraction and temperature for the main chamber 

and prechamber were given by the solution of the odes whilst k and c were 

ascribed values extrapolated from the experimental data of Witze 

(1977). This last practice is open to question, as the Witze data 
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relates to an engine with substantially different combustion chamber 

and valve geometry and is known to be in error (Witze, 1978). The 

specification of k and E in the prechamber is even more difficult 

in the absence of data and the authors chose initially to use the 

same values as the main chamber. This led to very fast flame speeds 

and these values were subsequently reduced to accord with measured 

flame speeds. In the absence of any guiding information, these 

difficulties are appreciated. 

No-slip boundary conditions were applied to the momentum 

equations whilst zero gradients were assumed for species and temperature. 

Heat transfer was accounted for in a rather ad hoc fashion by reducing 

the heat of combustion of the fuel. This seems an unnecessary 

simplication as there are better methods readily available for use 

in conjunction with the k "' E turbulence model for incorporating wall 

heat transfer as will be outlined in Chapter 4 of the present thesis. 

Boundary conditions for k and E were prescribed according to Launder 

and Spalding (1974). Combustion was assumed to follow a one-step 

irreversible reaction. 

Experimental studies have also been made by the same authors 

in an engine of 8.25 cm bore and 11.4 cm stroke with a compression 

ratio of 8.4:1 and a prechamber to total clearance volume of 14%. 

A flat transparent cylinder head to permit photography and a flat-top 

piston were used to approximate two dimensionality as far as possible. 

The main chamber fuel was injected early in the compression stroke at 

140°  BTDC via a diesel-type pump with an impinging jet nozzle in an 

effort to obtain a fine spray and complete evaporation and mixing 

near to TDC. Additional fuel was injected into the prechamber by a 
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second pump at 102°  BTDC. Tests were run at 1050 and 1550 rev/min, 

with two throat areas of .705 and 1.1 cm2  and at rich and lean fuellings. 

An assessment of the degree of homogeneity and uniformity of the fuel/ 

air mixture was not possible and occasional flaring in the main chamber 

suggests that local rich pockets or liquid fuel were present. It was 

also observed that considerable cycle-to-cycle variations occured with 

lean prechamber fuellings. 

The flame front in the computations is characterised by high 

temperature gradients (evidenced in plotting as close contours) and 

these are compared with photographic records of the combustion process. 

After combustion was initiated in the prechamber (in both the engine 

and computations) the jet passed through the throat and into the main 

chamber. The jet velocity reached a maximum when the flame first appeared 

in the main chamber and then decreased rapidly as it progressed through 

the latter. The increase in flame speed is plausibly attributed 

to high levels of turbulence in the throat, generated by the localised 

shear stresses, as a result of the outflow preceeding the flame front. 

As this turbulence was convected, diffused and dissipated in the main 

chamber, the flame speed reduced rapidly. 

The main findings of this study are that the k-e turbulence 

model was superior to an assumption of constant diffusivities used 

in an earlier work (Gupta et al, 1978) in the prediction of flame 

propagation although the flame speed and spread were sensitive to both 

the initial and boundary conditions for k and e. 
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Assessment of Theoretical Investigations  

The features of the models described can be classifiedin three 

groups: firstly,capability of representing geometric aspects which 

include a moving piston, prechamber, piston bowl, valve etc.; secondly, 

the extent to which the flow equationssolved represent physical 

reality, i.e. in respect of treatment of turbulence, boundary conditions 

etc. and lastly, the numerical aspects such as stability limits on 

time-step and cell Reynolds number. These features vary greatly between 

the models discussed and are summarised in table 2.1 for the most recent 

publication of each researcher(s). Also included for reference is 

the model used in this study. 

A few general points are made below concerning the more important 

aspects: 

1. The constraints that a cell Reynolds number restriction imposes 

are severe. 

2. Explicit features of differencing schemes that lead to time-

step stability criteria are apparently inefficient because 

of the small time-steps required. However, a true assessment 

of the relative merits of explicit and implicit schemes cannot 

be made unless computer times from two identical computer 

codes (in terms of equations solved, grids etc.) but with 

different differencing schemes, are compared. 

3. The grids used by some researchers, notably Griffen et al (1976) 

Diwakar et al (1976) and Chong et al (1976) were too coarse 

to permit accurate prediction of the flow and heat transfer. 

4. The incorporation of turbulence using a two-equation model has 

been shown by Gosman and Watkins (1976a,1976b) and Watkins 

(1977) to be important in calculating both the flow and wall 
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heat transfer and by Syed and Bracco (1979) to strongly 

influence the combustion process. 

5. With the exception of Boni et al (1978) and this study, the 

geometry flexibility allowed by the various computational 

methods is very limited. 

6. Detailed quantitative comparisons between calculations and 

experiment are non-existent, with the exception of Watkins 

(1977) and this study. 

2.6 Closure  

In this chapter both experimental and theoretical studies by 

previous researchers have been reviewed. Certain features of in-cylinder 

flows have been identified as being of particular importance, namely, 

the intake-induced flow and subsequent compression, swirl and squish. 

These have been reviewed in detail and areas of agreement and disagreement 

between the various researchers indicated. Measurements in axisymmetric 

engines are of special importance as, at the present, they can provide 

the only means of experimental verification of the theoretical model 

used in this study. Three sets of such experiments relating to both 

the flow and heat transfer in such engines have been described. Finally, 

models of in-cylinder flow processes used by other researchers have 

been reviewed and the modelling and numerical features of each indicated. 

There is a lack of detailed validation of these models, due in part to 



-55- 

the inflexibility of the models in predicting flows in even simple 

engine geometries (e.g. those with moving valves and bowl-in-head 

or piston bowl configurations) but also because few experimentalists 

have made comprehensive and accurate measurements in axisymmetric engines. 
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CHAPTER 3  

THE CO-ORDINATE FRAME AND DIFFERENTIAL EQUATIONS  

3.1 Outline of Path  

The purpose of this chapter is to assemble the differential 

equations that govern the flow and heat transfer in a form suitable 

for the present study. Firstly, in section 3.2, the peculiarities 

of practical diesel engine combustion chambers are discussed and 

the possible ways in which these may be incorporated into a viable 

computational scheme are examined. This section provides the 

framework upon which the subsequently derived equations are based. 

Section 3.3 describes a curvilinear orthogonal 

Eulerian co-ordinate system in detail including definitions of 

geometric quantities and operators used in the manipulation of the 

differential equations. Sections 3.4 and 3.5 present respectively 

the instantaneous and ensemble-averaged versions of the governing 

differential equations in curvilinear orthogonal co-ordinates. The 

equations at this stage contain unknown turbulence correlations and 

section 3.6, the turbulence model, discusses the alternative 

'levels' of turbulence model that may be employed, and how additional 

equations may be derived to calculate the turbulence properties 

(which are of interest in their own right). Section 3.7 describes 

the wall boundary conditions for all equations. In section 3.8, the 

mean flow equations of section 3.5, are closed using the results 

of section 3.6. 
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Section 3.9 derives formulae that are used to transform 

the differential equations,previously presented in Eulerian form, into 

a more flexible co-ordinate frame that moves in a manner determined 

by the motion of the piston. The equations for all variables are, 

at this stage, transformed into a final form. 

3.2 Computational Considerations of Diesel Combustion Systems  

The general partial differential equations that govern 

fluid flow and heat transfer, often referred to as the 'Navier-Stokes' 

and 'energy' equations, are too complicated for analytic solutions 

except in idealised situations; for the present problem, a numerical 

method of solution must be accepted. It is still early in the 

history of detailed in-cylinder computations, yet a solution protocol 

is emerging that does appear to possess certain advantages. 

Before discussing the main features of such procedures, 

it is worthwhile examining the characteristics of in-cylinder flows. 

Firstly, they have a time-varying domain of solution, governed by 

the position of the piston. Secondly, virtually all commercial 

diesel combustion systems have certain complex geometric features, 

such as piston bowls or prechambers,used to promote air motion and 

hence enhance mixing and combustion. 	Finally, some means of intake 

and exhaust must be provided and here there are many alternatives 

such as poppet valves, sleeve valves, rotary valves, piston-controlled 

porting etc. On the last two aspects, this study focusses on 

idealised axisymmetric configurations with centrally-located piston 

bowls and axisymmetric representations of poppet valves or orifices, 

however the method is capable of extension to fully three-dimensional 
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configurations, the sole difficulties here being increased computing 

requirements and accurate representation of the complex chamber 

topography. 

As with the majority of numerical solution schemes for 

pdes, the present method uses a computational grid superimposed upon 

the flow field and the values of the dependent variables of the 

differential equations are obtained at the intersection of the grid 

lines (or at intermediate locations, depending on the variable). The 

various ways in which the incorporation of the features of practical 

combustion systems into a viable computational procedure may be 

accomplished are discussed below. 

One approach to the problem of moving boundaries, adopted 

by Hirt et al (1970),has been to cause the grid to move with the 

mean flow in a Lagrangian fashion. The method has proved powerful 

in solving, for example, free-surface problems such as fluid slopping 

in a tank. A major disadvantage however, is that in complicated flows, 

particularly those exhibiting recirculation,severe mesh distortion 

can prevent a solution being obtained; for this reason it is not 

thought a wise choice for the present application. Eulerian methods 

on the other hand, suffer from problems of resolution when applied 

to flows with moving boundaries if there are large differences 

between the maximum and minimum sizes of the solution domain. In 

the present context, if adequate resolution is provided at BDC this 

would invariably be inadequate at TDC, whilst, if sufficient grid 

lines are disposed between the cylinder head and piston top at TDC 

the grid density in this region would be unnecessarily high at BDC. 

The use of an Eulerian co-ordinate frame under these circumstances 

could at best be described as inefficient. The alternative to fully 
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Lagrangian or Eulerian schemes is to provide a specification of grid 

movement so that all grid lines remain disposed between the cylinder 

head and piston top at all times and further,that their distortion 

is controlled;asthe piston motion is known, this is a simple task. 

Other researchers (Watkins (1973), Boni et al (1976) and Diwakar 

et al (1976)) have reached the same conclusion. 

Turning attention now to the complicated geometry of 

the combustion chamber, the optimum scheme, if there is an optimum, 

is not quite so obvious. Referring to fig. 1.1, the possible 

ways of incorporating such shapes into different co-ordinate frames, 

together with the attributes of the alternative methods, are given 

below. 

1. Rectilinear co-ordinate frame (fig. 3.1a)  

This choice leads to the simplest form of the governing 

differential equations. Different geometries can be represented 

relatively easily although the approximation of curved surfaces using 

"stepped" grids is poor. Further, selective concentration of grid nodes 

in such regions (required in order to resolve the wall boundary 

layers) is not possible without introducing nodes elsewhere where they 

are not needed, and the boundary conditions are no longer easy to 

apply. 

2. Curvilinear orthogonal co-ordinate frame (fig. 3.1b)  

The complexity of the differential equations when formulated 

in this frame is intermediate between rectilinear (1) and non-

orthogonal (3) formulations. The flexibility of the frame allows 

good approximation of curved boundary surfaces and easy application 

of boundary conditions. However some shapes may not be ideally 
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suited to orthogonal meshes (see appendix 1), notably those having 

non-orthogonal boundaries, and the orthogonality requirement 

sometimes presents non-optimum disposition of the grid nodes. Finally, 

a procedure is required to obtain the co-ordinate frame. 

3. Non-orthogonal co-ordinate frame (fig. 3.1c)  

The complexity of differential equations in this frame is 

greater than (1) or (2). On the other hand, it offers total flexibility 

and good approximation of boundary surfaces. Some means of co- 

ordinate frame generation is needed, but this can be relatively simple 

since orthogonality is not required. 

4. Orthogonal co-ordinate directions in non-orthogonal computational  

mesh 

An example of this approach is the ICED-ALE (Implicit 

Continuous-Fluid Eulerian - Arbitrary Lagrangian-Eulerian) method 

of Hirt et al (1974) which solves the governing equations in a 

Cartesian co-ordinate frame on a computing mesh which is non-orthogonal. 

However, the algorithm presented is semi-explicit and therefore 

requires the satisfaction of a time-step stability criterion, as 

previously mentioned in chapter 2. 

The development of an implicit method using a similar arrange-

ment was explored by the author, in which the SIMPLE algorithm 

(described in section 4.3) was to be used to solve the difference 

equations. However, although promising in some respects, this approach 

was finally abandoned due to the complexity and extreme length of 

the difference approximations to the differential equations, which 

could lead to excessive computing times. 
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5. Finite-element methods  

Although researched by many groups, finite-element methods 

have not yet gained the popularity for fluid flow problems that they 

enjoy, almost exclusively, for theoretical stress and vibration analysis. 

A brief review of the published technical achievements of finite-element 

methods suggests that they have not reached the stage where they 

could be applied to the present problem. 

Summary of Methods  

. 	Method 1, although simple, is not well suited to configurations 

involving boundary curvature for the reasons indicated and would 

require considerable testing to quantify the effects of "stepped" 

boundaries. Haselman and Westbrook (1978) have used this method to 

approximate a circular flow field, and using fine grids (40 x 40), 

have found a 5% angular momentum decay per swirl revolution attributable 

to the boundary treatment even though a "free-slip" boundary condition 

was imposed. This decay rate, due solely to the numerical method, 

would prove unacceptable in engine situations, where high rates of 

rotation are found in piston bowls near TDC. 

Method 2 is much more flexible in respect of locating 

grid 	lines and imposing boundary conditions and requires little 

extra computational effort; it does however require that curvilinear 

orthogonal grids can be generated easily and efficiently. 

Method 3 is the most general, but is probably unnecessarily 

so for the geometries considered. It is the most expensive 

computationally of the first three and again some means of grid 

generation must be provided. 
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In view of a total lack of experience with methods 4 and 

5 it would seem unwise to attempt an ambitious problem such as the 

in-cylinder flow as an introduction to the techniques. 

In the light of the above considerations, the co-ordinate 

frame finally chosen has the following characteristics: 

1. Rectilinear and expanding/contracting with the piston motion 

between the cylinder head and piston top. 

2. Curvilinear-orthogonal in the piston bowl and translating with 

the piston motion. 

3. Axisymmetric. 

A typical example generated using the method described in appendix 1 

is shown in fig. 3.2. 

3.3 The Co-Ordinate System  

Fig. 3.3 illustrates a portion of a curvilinear orthogonal 

co-ordinate frame. The mutually-orthogonal co-ordinate directions 

cl' c2 and C3  are defined with respect to an axial (z), radial (r) 

and circumferential (6) co-ordinate frame such that the l-c2 

plane lies in the r-z plane and is a constant 
C3  surface whilst the 

c3 direction is identical with the 6 direction, the angle of 

revolution about the r=0 axis. Lines of C1  = constant and C2 = constant 

are characterised by surfaces of revolution about the r=0 axis 

whilst C3 = constant represents a plane. 

The equations to be presented assume axial symmetry, and 

within this constraint, all variations in the 
C3  direction are assumed 

zero. 
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Before the conservation equations can be formulated, further 

definition of the co-ordinate frame is needed. Sufficient information 

is provided by a knowledge of the orientation of either the cl or 

c2 directions with the r or z axes and the radii of curvature rl, 

r2 and r3. On the former aspect an angle S is defined, between 

the 
cl 

direction and the r = 0 axis; it follows that the angle 

between the c2 
direction and the r = 0 axis is 90 + S. 

The distance between nearby points within the co-ordinate 

frame, ds, is related to the metric coefficients £1 , £2 
and £

3 
and 

increments in cl, c2 
and c

3 
by: 

(ds)2 = (9,1dc1 )2 + (Q2k2)2 + (2,3d3)2 

	
(3.1) 

Although variations in the c3 
direction are not accounted for, this 

does not preclude the existance of a metric coefficient, Q3, which 

is in fact equal to the radial distance, r. In general, both the 

grid orientation and the metric coefficients vary throughout the 

field, and for the present application, the latter may also vary 

with time (as described in section 3.9). 

Four identities that aid the manipulation of the differential 

equations, and relate the radii of curvature to the metric 

coefficients, are: 

a 1 	_ 1 aQ2 _ Q1 

	

-Q2 a~l(Q2) 	Q2 a 1 	
r2 

a 1 	1 321 £2 
-41 

7--- %T ) =il aC2 -r
l 

a 1 	1 32'3 
Qlsins 

-Q3 31(Q3) = Q3 a~1 =  r3  

a 1 	_ 1 3Q3 _ Q2coss _ 

	

Q3 3C2( Q3) 	
2'3 ac2 	

r3  

(3.2) 
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A further equation that is required is the divergence operator, v, 

defined as: 

v.w = Q1R2Q3 ~a~1 (Q2Q3w1) + a-2(R12.3w2)] (3.3) 

Here, w is a vector quantity and its components in the 
c1 and r2 

directions are w1 and w2. Equation 3.3 may be rewritten using 

the identities 3.2 , to produce a form involving the radii of 

curvature and the grid orientation, that is: 

1 awl wl 1 aw2 w2 v.w=(Rī 
ac1

+) + (R2a~2+rl ) 

+ r3 (w1 sine + w2cose ) 
	

(3.4) 

Both forms are used in the differential equations. 

3.4 Instantaneous Conservation Equations  

The equations are presented here without proof; further 

details concerning their derivation may be found in a publication 

by Gosman et al (1969). Vinokur (1974) also derived the conservation 

equations, in this instance in a more general non-orthogonal 

co-ordinate system, although of more interest, a set of equations 

in a curvilinear orthogonal co-ordinate frame with temporal changes 

of the metric coefficients is also presented, and this latter aspect 

is a generalisation of the equations resulting from the co-ordinate 

transformations of section 3.9. The Eulerian form of the 

curvilinear-orthogonal equations are also presented by Humphrey (1978) 
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in general tensor notation and have been derived from the cartesian form by 

Pope (1978). Although the general tensor form.of the equations is more

compact, it is not used here so as to preserve clarity and highlight 

the nature of the additional terms that arise through co-ordinate 

curvature. In the equations, the symbols have the following 

meanings: p is the fluid density; vl, Q2 and v3 are the velocity 

components in the fil, 
C2 

and 
C3 

directions respectively; T is the 

stress tensor for a Newtonian fluid, whose components are defined 

by equations 3.15 and u 	is the laminar viscosity; h is the 

stagnation enthalpy defined by: 

^2 

=CpT+E 2? 

T stands for absolute temperature, A is the thermal conductivity 

and Cp is the specific heat defined as C = h where h is the p  
T 

instantaneous static enthalpy and p stands for pressure. 

Conservation of mass  

ap +  1  { a (Q~pv)+
---(2.12'3'‘3'1)2)/

a = 0 
Q1 Q2Q3 aZ

1 2 3 1 	
2  

(3.5) 

(3.6) 

Conservation of momentum - direction 1 

1a(aCi) + Q 1 Q {aa [Q2Q3(pvlvl - T11)] + a 	[Y Q3(pv2v1 ' T12)]} 
123 	1 	 2 

+ 1 	als - 	[pv2 - T 	_ si n6 [ pv2 - T ] + 1 [ 	
q12] 

= 0 (3.7) acl 	r2 	2 	22 	r3 	3 	33 	rl 	2 1 	12 
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Conservation of momentum - direction 2  

T(pv2) 	Q 42, { 
a CQ Q (pv v 	.`21)3  + a [219-36"C2`12    - -1-22Y11 1 23 ~ 23 1 2 - 	a 2   

^ 
1 ap 	1 	^^2 	COs~ 	^2 	1 	^ ^ 	^ 

+ Q2 ac2 
- rl [Pv1 - T11] - r3 [pv3 T33] + r2 [pv1v2 - T21] = 0 

(3.8) 

Conservation of momentum - direction 3  

 ( 	 ]- 1 2 3 a 	2 	 31 	~32332a pv3 	 2,2, 	 C 	 2  

+ r3  [sins (pc1■i3 - T31 ) + cos$(pv2v3 - T32)] = 0 	(3.9) 

Conservation of energy  
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The temperature, density and pressure are linked by an equation 

of state; the ideal gas relationship is used here, but this is not 

essential to the analysis: 

where 

P = QP 

Q = 1 

RI 

(3.11) 

(3.12) 

The normal and shear stress components for a compressible flow are 

given in general form (see e.g. Goldstein (1957)) by: 

ū [1 avi Q. at. Gk at. 
[1

- 2 	" 

Tii = 
	{ 2 Q1 dCi + R1 ~J 

acj 
+ ~kQi ack 

	
3 v.v

} 
_ (3.13) 

and: 
A 

T 	
, 	Q 	i 

a 	
i _ 	~?) 	 '99 	v4 
)}{ 	a 

Usingg equations 3.2 relating the gradients of metric coefficient 

to the radii of curvature, the components of the stress tensor can 

be written as: 

av 	v 
T11 = u {2[Z 

a~1 
+ 	- 3 v.v } 

1 	 1 1 
r1 

 

T22 = u 
{2[

27— a:2 + rl] 	
3 

v.v} 
2 2 2 

AT33 =u {r2 [vlsins+ v2cosf3]- 3 v.v} 
3 

1 av1 
C11 

1 av2 v2 
T21 = T12 

=u {2 ac2 rl + Q1 aCi 
	

r2 } 

1 a03 
v3sin6 

z31 = 
T

. 
 = ū {R1 a, 	r3 	} 

1 av3 
v3cos$ 

T32 = T23 =ū {Q2 aC2 
	

r3 	 

(3.14) 

(3.15) 
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Equations 3.6 to 3.10 are exact and are equally 

applicable to both laminar and turbulent flows, however, they are 

not solved in the form presented for the reason indicated below. 

3.5 Ensemble-Averaged Conservation Equations  

The numerical method of solution employed to solve the 

equations calculates the value of each dependent variable at 

discrete locations throughout the field defined by the co-ordinate mesh. 

The flow in engine cylinders is highly turbulent and the important 

properties of the turbulence have small time and length scales, for 

example, the characteristic dimension of the eddies responsible for 

the decay of turbulence in engines is less than .5mm (Dent and Salama 

1975b). To resolve detail of this order is impossible and resort 

is therefore made to the determination of averaged values of the 

variable in question in which the averaging process removes explicit 

reference to the small-scale motions. This is done by first 

replacing the instantaneous values of the variables (designated by 

the ($ symbol) by the sum of an ensemble-average value (F) and a 

variation (').about this value, i.e. typically: 

p=p+p' , 	vi  =vi  + vi 	etc. 

The application of this technique to steady flows, is well established, 

however there are implications when applied to unsteady processes 

that merit additional consideration and these are discussed in the 

next section. 
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The replacement of the instantaneous quantities in 

equations 3.6 to 3.10 by a mean and fluctuating component and 

ensemble averaging the result (see Watkins, 1977) produces the 

following: 

Conservation of mass  

at + kik2Q3 { ac1 [(Q2Q3(pvl + p 1 )] + a 2 CQ13(pv2 + p'v2)] }= 0 (3.16) 

Conservation of momentum - direction 1  

at (pv1 + 77-1-)÷
k 

  
1 ~'2Q3 

{ l [22t3(pv1 v1 + (pv j - T11) + 2v1 p 

+ p'v j)J + 	[2 3(pv2v1 + (p 2 i - (21 ) + v2p V + vl 2 + p'viV)l } 

1 ap 1 	 ---,— T~ 
+ 1 all 

- p2 [ pv2v2 + (pv2v2 - T22) + 2v2p v2 + p v2v2 

sins [ pv3v3 +( p 3 3 - 7c33) + 2 v3 p'v3 + p' 3 3 ] 
3 

+ rL [ pv2v1 + (pv2 1 - t21) + v2p + vip v2 + p 2vii = 0 (3.17) 

Terms involving the ensemble-average of a single fluctuating quantity 

are, by definition, zero. The stress tensor components have been 

grouped with certain fluctuating quantities for which the reason 

will become apparent after the turbulence model has been discussed. 

Note also that T may be replaced directly by Y as it contains no 

products of fluctuating quantities, ignoring fluctuations of laminar 

viscosity which could be caused by, for example, temperature fluctuations 
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which are in any case usually negligibly small in unreacting 

turbulent flows. 

Conservation of momentum - direction 2  

71.0v
2 + p ) + 2,l 22,3 {

all 
[2,22,3(Av112 + (AVV- 2 - T12) + V2P 

+ yi p 	+ A'viv2)] + 427C2 Q3(Av2v2 + (pv2 2 -7.22) 

+ 2v2p'v2 + p'v2v2)] } + Q 
a z 2 

r 
- 
~ Pvlvl + (pvivi - 711) + 2v1p i + p vivj ] 

Coss [ (Iv3v3 + (
"3 3 - 733) + 2v3 p v3 + p3 3 

+r2 [ pvlv2 + (AT2 - T12) + vlp 2 + v2p v + pvj ] = 0 

(3.18) 

Conservation of momentum - direction 3  

āt(p13 + 77771  3 + 9,l929,3 { a3l C
2,29,3(71173 + (Av~v3 - T13 ) + v3p 1 

+ yip v3 + A'viv3)] +  	E9 i 3(pv2v3 + (pv2 3 - T23) + v3A v 

+ v2p 3+p3)]} 

+ r3 [sins(pV1v3 + (Av1v3 - T13) + vl~ p 3 + v3p + p v' ~v3) 

+ cOSs(pV
2 

V3 
+ (pv23 V3 - T

23 
) + V2 	3 v + v3 	2 + p'V2 V3 )]= 0 	(3.19) 



- 71 - 

Conservation of energy 

Ignoring fluctuations of laminar viscosity, thermal conductivity 

and specific heat, the ensemble averaged stagnation enthalpy equation 

is: 

T-(Ph) + £1 "2~'3 {
' 

[Q 22"3(pv1h + Ti h' + v—'p Ī' + FiP v~ + P'v~ h' )] 

a 
+ 	[2,12,3(7/7 + pp 2h' + v2p'h' + hp 2 + p'v2h' )] 

- a [ 	3 ..,~ .ah. j- 	[ 1 3 ~- 
a 	

] } - 
at  1 	1 Cp a~1 	2 	2 Cp c2 

 
21212.3 1 
	{ 

aa 
L QQ3(u - 	}aa 

(E 
2 

+ k )] 
  c1 	1 	c1 

+ 
C2 
[ Q23Cū - 

	
) aC2(E — + k)] } = 0 

where 	Fi = P + E — + k 

(3.20) 

(3.21) 

v'2 
(k = Eem) 

 

Equations 3.16 to 3.20 are as complete and exact as the instantaneous 

equations in two dimensions and are equally insoluble because the 

averaging process has given rise to new unknowns like -c717:17712-.  Before 

a solution can be effected, further equations for these unknowns 

must be found in order to form a closed set. The process of formu-

lating equations for the unknown correlations is termed 'turbulence 

modelling' and forms the subject of the next section. 
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3.6 The Turbulence Model  

Physics of the Turbulence Process  

Turbulent flows contain a spectrum of eddy sizes and strengths 

from the largest, generated by the action of the mean flow, to the 

smallest, dominated by viscous effects. The larger eddies are often 

referred to as 'energy containing' and they extract energy from 

the mean flow at a rate equal to the work done by the mean rate of 

strain against the Reynolds stresses 	(- p 
v.  v  terms). (Strictly 

speaking, the energy containing eddies are not the largest, although 

the more permanent larger eddies contain up to 20% of the total 

kinetic energy (Hinze, 1959)). Turbulence in this part of the size 

spectrum exhibits an anisotropic (directionally dependent) structure 

as the Reynolds stresses and mean strain rates depend upon the mean 

flow. Viscous effects on these eddies are small if a turbulent 

Reynolds number, defined as Rex  = v'a/v where v' is a fluctuating 

velocity, A is a typical length scale (intermediate between the 

largest and smallest eddies and termed the Taylor microscale) and v 

is the kinematic viscosity, is reasonably high (Rex  > 30) (Bradshaw, 

1971). At the lower end of the size spectrum, the smallest eddies 

exhibit an isotropic structure, which is statistically independent of 

the mean flow and the largest eddies. The small eddies are supplied 

energy from the larger ones (this exchange process is called the 

"energy cascade") which is subsequently dissipated into heat by the 

action of viscosity. The process is not of course quite this simple, 

as large eddies are affected to some extent by viscosity and the 

small eddies do contain some energy, yet this picture does provide 

a broad view of the modes of generation and destruction of turbulence. 
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Turbulence is also convected and diffused in the mean flow. 

It would seem reasonable therefore that any turbulence model that 

purports to being realistic would at least attempt to incorporate 

these phenomena. 

The mathematical representation of turbulence quantities  

As indicated in the previous section the instantaneous 

value of some dependent variable of the flow, denoted cp, can be 

represented mathematically by an average value, j, upon which a 

fluctuating component, q', has been superimposed, i.e. 

(3.22) 

For a statistically stationary or 'steady' flow, it is usual to define 

as being a time-averaged value (see e.g. Hinze, 1959) as: 

	

1 	t=t0  

	

T(x0) = Limit 2t 
	

f 	$(xo,t)dt 
t0400 0 t=-t0  

If the flow is non-stationary or unsteady, an ensemble-

averaged value is defined as: 

n=m 

	

t) = Limit 	E 	4(x0,nt0  +t) 

	

m i 00 	n=-m 
(3.24) 

Here, if the flow is not cyclically repeating temporarally, n 

stands for the number of identically repeated experiments and if 

the flow is cyclically repetative then n is the number of cycles; t is 

the time after the start of each experiment dr cycle of period to and 

x0 is some fixed point in space. 	It is possible to 

determine experimentally both the ensemble averaged and fluctuating com-

ponents using these expressions (the latter quantity by subtracting 

the mean from the instantaneous value). However, when applied to 

(3.23) 
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"cyclic" process that exhibit cycle-to-cycle variations, as is the 

case in IC engines, the measured turbulence quantity will be larger 

than the true value, that is, the cycle-to-cycle variations appear 

as an additional or apparent turbulence. This, at least in theory, 

can be overcome by using a mixed ensemble/time average (Lancaster, 

1976, and, Woods and Ghirlando, 1975). If $ is defined as: 

$ _ ~ + it + $' (3.25) 

where 70-11 is the ensemble averaged value and Tt is a time-averaged 

value over some short time interval for the n'th cycle after (n has 

been subtracted, then ¢t represents the cycle-to-cycle variation of 

the mean velocity (see fig. 3.4). In practice, the determination 

of Tt is difficult as the crank-angle "window" over which the value 

of $ is averaged is of necessity large (Lancaster used 450), and 

over which period the "constant" time-averaged value certainly 

varies considerably. 

A distinction should here be drawn between experiment and 

cycle-averaged quantities in the context of the differential equations. 

If it is assumed that because the motions inside the reciprocating 

engine are cyclic (ignoring cycle-to-cycle variations), then i 

is by definition a cycle-averaged value, thus precluding the use 

of the equations for anything other than a cyclic solution (Watkins, 

1977). It is therefore expedient to consider 	as being experi- 

ment-averaged which does not restrict the use of the method to a 

cyclically-steady operating condition. 
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Density Fluctuations  

Equations 3.16 to 3.20 contain some terms of the form 

v and TT-. The replacement of these by calculable quantities 

is difficult and uncertain (Syed, 1977), although in the absence of 

combustion, they are in any case probably much smaller than the 

other correlations. Their role in combustion calculations however, 

could prove to be significant (Libby and Bray, 1977). They are ignored 

in the present analysis. An alternative proposed by Favre (1969) is 

to work with mass-averaged variables. It has been shown by Pope (1976) 

others that when this is done the resulting equations are the same and 

as the ensemble-averaged versions with the above-mentioned terms omitted. 

However the extraction of the ensemble-average variables from the 

mass averaged ones still requires the modelling of the p'4' terms. 

Choice of a Turbulence Model  

A variety of models exist for incorporating the effects of 

turbulence into fluid flow calculations. The alternative modelling 

approaches may be summarised as follows: 

(1) The 'turbulent' or 'eddy' viscosity concept approximates the 

turbulent transport of momentum in the mean flow equations 

by the product of a turbulent viscosity (pt) and a gradient 

of mean velocity (see equations 3.29 and 3.30). The turbulent 

viscosity is related to turbulent length (Qt) and velocity 

(vt) scales (Prandtl, 1925, 1945) via the relationship: 

ut  = p'tvt (3.26) 

these latter quantities being either specified or calculated 

from differential equations. 
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(2) The turbulent viscosity approximation may be dispensed with 

by solving differential equations for the Reynolds stresses 

themselves. This requires the solution of 6 pdes if all 

stress components are non-zero and an additional pde for the 

length scale (see e.g. Rotta, 1951). In certain classes 

of flow, characterised by small velocity gradients, the mean 

flow transport terms of the Reynolds stress pdes may be 

approximated in an algebraic fashion, thereby reducing the 

number of differential equations (see e.g. Ying, 1971). 

(3) Large eddy simulation (LES) is a 3-d, time-dependent calculation 

of the large-scale turbulence field. Modelling is necessary 

only for turbulence of scales smaller than the computational 

grid spacing. Unlike (1) and (2) above, the large-scale 

turbulence does not need modelling, this being required 

only for the small-scale turbulence which is much more 

universal (isotropic) in character and may be modelled in 

terms of the local large-scale field. The length scales of 

the subgrid-scale turbulence are determined by the grid 

size and not by a modelled equation, thus, the method simulates 

directly all of the turbulence greater than the grid size 

(see e.g.Reynolds, W.C., 1978). 

The above options are listed in increasing order of complexity 

(and computational expense). The condition of small velocity gradients, 

required for the algebraic approximation to the Reynolds-stress model 

in (2), is not fulfilled for the flow in engine cylinders. The 

alternative in this case is a solution of 7 pdes in addition to the 

mean flow equations - a task not to be taken lightly. LES, (3) above, 

appears attractive as the flow in engine cylinders is time-dependent 
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and most configurations of interest are 3-d. However this form of 

modelling is still at an embryonic stage and the indications are 

that the required computer resources can be enormous (see e.g. 

Saffman, 1977). It therefore seems reasonable that unless the class 

of models outlined in (1) are, through careful validation, found to 

be inadequate, or such time as advances in computers and further model 

development make (2) and (3) more attractive,that the simpler models 

are worthy of exploitation. 

Focussing attention then on the class of models in (1), 

Prandtl (1945) has suggested that the velocity scale is well represented 

by the square root of the turbulent kinetic energy, k(=1/2 E v). 

This definition implies isotropy in the larger scale turbulent motions, 

no distinction being made between the three normal components of 

Reynolds stress. The turbulent viscosity is then given by: 

Pt = p1
'tk

1/2  (3.27) 

Both 2t  and k may be determined from the solution of differential 

transport equations. Other two-equation models have been proposed 

(see e.g. Launder and Spalding, 1972), the most popular being that 

of Jones and Launder (1972) which solves pdes for the turbulence 

energy and its dissipation rate, c (=k3/2/Q,t). Other variables 

related to k and Qt  may be substituted for c although this quantity 

is favoured because of the relative simplicity of the a equation. This 

model would therefore seem a reasonable choice for the present and 

does have the advantage of being well documented, at least, for 

steady flows. 
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Turbulent Kinetic-Energy Equation  

A differential equation for the conservation of turbulent kinetic 

energy may be derived by multiplying the momentum equation for vi by 

its respective fluctuating component vi, then summing over i and 

ensemble-averaging. The process has been carried out in detail by 

Watkins (1977) and others; the result is: 

	

I 
	

4(Tk) 

	

II 	+£1923 {ā (Q223pv1 k) + 3 2(~1 Q3pv2k) 

Qt QZ1 	
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3pv2 ( k + p )j } 
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1 avl 	v2 	v v 	1 
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v1 + pv1 v1 , 1 a~ + ~1 ) + p 22 (Z2 a~2 + r2 ) 

IV 
v sins+v coss 

+ pv3v3 ( 	1 r
3 
	)+ pv' 1 2 

3 

971 v1 1 a72 v2 _ + 	) 
a 2 r1 Q1 	r2 

--r,- 1 av3 v3sins 	---r—r 1 ::-3 
v3coss 

+ pvlv3 (£1 all 	r3 )4.  p v2v3 ( Q2 	 2 	r 	3 	) 

3C i 

1 
avi z 

VI 	+ E u{ QJ J} 

1 a u ak 
VII 	- E Q 

	
{Q 

a } =0 (3.28) 
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Terms I and II represent the rate of change and convection 

by the mean flow of k respectively. 

Term III describes the transport of k by the fluctuating 

velocities, which has been assumed by Prandtl (1945), Kolmogorov 

(1942) and others to be a diffusion process. The pressure diffusion 

part of this term (proportional to p'/p) is neglected on the evidence 

of measured turbulence energy budgets which balance without it 

(Bradshaw, Cebeci and Whitelaw, 1977). Term III is modelled as: 

1 
 { a  

Q2
k 3 ut ak ) +   a Q1 Q 3 

p
t ak

2 	
) }Q2.2. a( Q6aa ( Q aa1 	 lk 	2 	k  

where 6k is a turbulent Prandtl number. 

Term IV consists of products of stresses and mean strain rates 

and represents the generation rate of turbulence energy. A general 

form of the Boussinesq approximation (Boussinesq, 1877) for a com-

pressible flow may be used to express the stress components in terms 

of the mean strain rate (Hinze, 1959): 

@v.
1 

v aL. vk ati 
2 

- pv- ;vi = 2pt {Q~ 	 ~ + ~ J 	 J + QkQI ack } - 3(p k + pt V.17) 	(3.29) 

and 

V. 
t{Q? a2 _ ( 

Z. 
+ Z. a ( L. } 

1 	J 	J 	J 	1 

(3.30) 
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Using these expressions, the generation rate may be written as: 

1 
avl v2 2 	1 av2 vl 2 

Gt = ut {2( 77-15T- + r ) +2(Q a~ +r ) 
1 	1 	1 	2 	2 

	

V1 sini3 + v2coss 2 + 1 avl 	VI + 1 av2 v2 2 
+ 2 	 

( 	r3 	) 	( Q2 5T2 	r1 	271 all r2 ) 

l 3v3 	v3sin6 2 	
1 

37/ 	v3coss 2 

+( Ql all 
- r3 	) 	

(97-2.72-  
	r3  ) 

- 2V.V ( pk + utv.v ) 	 (3.31) 

Term V is also a production term, in this case due to the 

interaction between the fluctuating pressure and the fluctuating 

velocities. Little is known about the term although Bray (1974) 

suggests that it is negligible for low Mach number reacting flows; 

it is therefore neglected here. 

Term VI represents the dissipation of turbulence energy and 

is replaced by pc,the dissipation rate c being the dependent variable 

of its own transport equation as mentioned earlier. 

Noting that k1/2 and k3/2/c are respectively a characteristic 

velocity and length scale of the turbulent field, dimensional analysis 

yields the following relation for the turbulent viscosity: 

ut = Cup 
k
2 	

(3.32) 

where Cu is an empirical coefficient, usually ascribed a constant 

value. 

Term VII represents the transport of k by molecular 

diffusion and may be combined with the modelled form of term III 

to give: 



- 81 - 

1 	{ a ( 2,22,3 peff ak ) + a ( 2,1 2,3 peff ak ) 
9, 9, 9, {TT- 	 ok ac1 	

ace 	6k ac21 

where the effective viscosity, 
peff, 

is the sum of the turbulent 

and laminar viscosities, i.e.: 

(3.33) 
peff = pt + p 

The final term of the k equation may be written as: 

(pk) + 2,1 2,22,3 { 8~1(2,22,3p vlk) + 	 2(2,3-1 p v2k) 

ac1 
	

a~2 
( 

2,2 	
ak 

7c2 
) } 

- Gt +pE=0 

a 	222,3 peff ak 	a 	2,1 23 peff ak 

(3.34) 

Dissipation Equation  

An exact equation for c can be derived by taking a derivative 

of the equation for vi with respect to c2,, multiplying 
av' 

by Q a~' and ensemble averaging (see e.g. Watkins, 1977). The 
2, 	2, 

result, in general form, is: 

I 	āt(pe) + 	9.1 2.22,3 { aC-1(2,223pv1e)
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~2 (2,1 2,3pv c) 
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av'. 	av : 	ay!  2 1 	11 	J1 	1 4.11 ( IV 	+2u{Al a ~Q Qt"t
Q
J a~J 

+ p (  J
a J

Qar ) 

V 2pc ay! 	pc av2. 
Q~ aC. QQ āe- 

Vi 	+ 2u 1 	a 	1 avi 1 9p' 	2ua2 v. 
P 1 

7 2; 3C. (2Q acQ 2Q ac2, ) + Q
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ace QQ a Q 

Slu 	= 0 	 (3.35) 

where s 	contains terms involving gradients of molecular viscosity, 

mean density and fluctuating pressure. 

Term II describes the transport of e by the fluctuating 

velocities and is modelled in the same fashion as the similar 

term in the k equation: 

1 	a 	2,2L3 ueff as 	a 	
t
1
2,
3 ueff as 

Rl Q2Q3 { 
all ( Q1 	

6c a1) + ac
2 ( Q2 	ac aC2) } 

Term III expresses the augmentation of the dissipation rate 

by the mean motion, which Launder and Spalding (1972) have modelled 

as: 

1 aV. āv. v 	av. 	av. 	av. 
2u{—. 	J1 	11 	1 + l 	1 1 	1 1 	1 1 

QQ ac kQ a~Q k. ace Q~ k. QQ Dck kt a~Q 

= - Cl p 	1 v j
• a ~ 
J 

Term IV represents the decay of the dissipation rate and is 

assumed to be proportional to the dissipation rate itself divided by 
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the decay time scale of the turbulence, k/E, (Hanjalic, 1970), 

thus: 

211 { 1 
Dv 

1 
avj 	1 avi + u 	a2 vi 	2 

Q Q 	p ( tjaciXtact 	 ) } 

E2 
C 2 P k— 

Term  V contains the product of dissipation rate and (a) 

the divergence of the fluctuating velocity and (b) the divergence 

of the mean velocity. The former is assumed negligible and is 

neglected while the latter is retained. 

Term VI contains unknown correlations of gradients of 

fluctuating pressure and velocity; these, together with the remaining 

terms in s 	are neglected for high Reynolds number flows. 

The final form of the E equation is then: 

at(PE) + £1Q2-3 { acl (Q2Q3 P v1E) + 571-1-3 - vE) 

a 	2223 ueff aE 	a 	£l23 ueff aE 
- ( Q1 
	QE a 1 ) a ( Q2 	QE 	a~2 ) } T  

2 
- C 

	
Gt + C2 p k— - pEV.v = 0 	 (3.36) 

The values assigned to the various empirical constants that appear 

in the turbulence equations are given in table 3.1 and are taken 

from Gosman and Pun (1974). 
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3.7 Wall Boundary Conditions  

These are two important features that distinguish near-wall 

regions from other parts of the flow field: firstly, there are 

steep gradients of most of the flow properties, and secondly, the 

turbulent Reynolds number is low so that the effects of molecular 

viscosity can influence the production, dissipation and transport 

of turbulence energy. In addition, the presence of the wall influences 

the eddy structure so that the small scale turbulence is no longer 

isotropic. Within the framework of the method already described, 

these effects can in principle be accounted for, the former, by 

using closely spaced grids to resolve the gradients and the latter, 

by modifying the turbulence model so that low Reynolds number 

phenomena are more accurately modelled (see e.g. Jones and Launder, 

1972). 	However, unless detail near the wall is of special interest 

it is impractical to use this approach. The alternative is to 'bridge' 

the near wall region by using semi-empirical relationships for the 

dependent variables based upon the (nearly) universal functions of 

the dimensionless distance normal to the wall, y+, defined as: 

Y -  pvy  

where the 'friction velocity' vT  is given by: 

v = (Tw)1/2 
T p 

Tw  being the wall shear stress and y the normal distance. 

u 
(3.37) 

(3.38) 

It is important to note that the experimental data used 

to determine the 'law of the wall' are, with few exceptions, for 

steady, one-dimensional flows. The use of these formulae for unsteady 
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recirculating flows is difficult to justify on any grounds apart 

from the absence of any feasible alternative. It could however be 

reasonably argued that in engine cylinders, wall effects will be of 

secondary importance on the interior flow structure although highly 

important in determining, for example, wall heat transfer. 

The parameter y+  has been used by Tennekes and Lumley 

(1973), Reynolds, A.J. (1974) and others to correlate experimentally-

determined flow properties near the wall. In engineering calculations, 

the buffer layer (5 <y+  <30) may be dispensed with by extending the 

viscous and inertial sublayers to a common boundary at y+  = 11.63. 

In the inertial sublayer (now defined as y+  > 11.63) the velocity 

variation may be described by a logarithmic relationship (Schlichting, 

1968), i.e.: 

v = 
KT 

Qn(Ey+) 	 (3.39) 

where E and K are experimentally determined constants given in table 

3.1. In both the viscous (y+  < 11.63) and inertial sublayers, the 

shear stress is calculated from the product of effective viscosity 

ueff and tangential velocity gradient al/ , i.e,: 

av 
tw = peff āy (3.40) 

for y+  < 11.63 	the turbulent viscosity is assumed zero and ueff 

may be replaced by p  whilst for y+  > 11.63, pt  is considerably 

greater than p and the latter may be assumed negligible. 

Near a wall, the transport equation for the turbulent kinetic 

energy 3.34 reduces to a balance between the local production and 
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dissipation of k (Launder and Spalding, 1972) to give: 

Pt(-502 = PE 	 (3.41) 

The velocity gradient and dissipation rate may be replaced from 

equation 3.40 and 3.32 to give: 

Tw =Cū/2  pk=pvT  

Hence, it follows from equation 3.39: 

pC1/4k1/Zv K 
u Tw  - 	
R  n (Ey

+)  

(3.42) 

(3.43) 

Here, it should be noted that the tangential velocity, v, is the 

resultant of either vl  and V3  or v2  and v3  depending upon the boundary 

under consideration. Typically, for a 	2 = constant boundary, this 

is: 

v = Fil  + v2 1/2 
  3)  (3.44) 

The resultant shear stress, evaluated from either equation 3.40 or 

3.43 depending upon the value of y+, must therefore be resolved into 

the two co-ordinate directions, as follows: 

vl  

T21  - Tw v 
(3.45) 

V3  

T23  Tw  v  

where T21  and T23  are the components of shear stress in directions 

1 and 3 respectively at a c2 = constant boundary. 

The boundary condition for the dissipation rate is obtained 

in the following way: the turbulent viscosity is replaced in 

equation 3.40 from 3.32 to give: 



Cu p  k
2 
 av  

Tw  = 
g 	ōy (3.46) 

Ky Tw  

Cupk2 
vT  

e= (3.48) 
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Substituting for y+  in equation 3.39 and differentiating 

gives: 

— av_ vT 
ay Ky (3.47) 

The velocity gradient may now be eliminated between equations 3.46 

and 3.47, i.e.: 

Finally, vT  and Tw  may be replaced in equation 3.48 from 3.39 and 

3.43 to yield: 

C3/4 k3/2  

s =  u  
Ky 

(3.49) 

The generation rate of k is evaluated using the calculated shear 

stress, such that: 

G=Tw  av
a

y  

Typically, for a c2 = constant boundary: 

	

1 avl 
 vl 	

1 av3 v3 
G=T21 {x 8 	r} + T23 { R a 	r3 

coss} 

	

2 -2 1 	 2 C2 3 

(3.50) 

(3.51) 

An expression for the heat flux at the boundary,
w
, can be 

developed from dimensional considerations (Reynolds, A.J., 1974), 

which in the absence of kinetic heating, pressure gradients, mass 

transfer and surface roughness is: 
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cw 
u y 	dT 

_ - 6 { -kn (Ey+) +P} d w 
h 

(3.52) 

dT 
where 	is the normal temperature gradient. The term, P, expresses 

ay 

the contribution of the laminar sublayer to the total resistance 

and the function and here is due to Jayatillaka (1969); it is: 

p= 9{ ~Q - 1}{~Q}1/4 
6h 	~h 

For y+ < 11.63 the heat flux is evaluated from: 

u 

 

dT w 
qw = - ak dy 

(3.53) 

(3.54) 

3.8 Modelled Form of the Mean Flow Equations  

The modelling of the Reynolds stress terms in the ensemble-

averaged momentum equation has already been indicated in the previous 

section. The additional terms appearing in the energy equation 

(3.20) are of the form p vih' and represent additional fluxes due 

to turbulence. Following Launder and Spalding (1972) and others, 

these are modelled as a diffusion process, typically: 

1 1 ak + (ak - Qh)al } (3.55) 

where 

Fi = 7-
T 

+E 	+ k (3.56) 
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The equation of state for the ensemble averaged properties may 

be written as: 

P = Qp (3.57) 

where 
= 1 

RT 
(3.58) 

The foregoing differential equations for all variables can 

be written in a general form as: 

a (P~) + Z
1 

2.23{ a 1(222.3 p v1 4)) + aa (Q1 Q3P 7̀271") 

Q Q 
- a1(Q2i3 r,-) - 

a2 
( Q23 r~ 	)} =s~ 	 (3.59) 

cl 

where 	represents 171, 172, v3, 1, k, c or in the case of mass 

conservation, unity. The definitions of the associated turbulent 

diffusivity, r
11) 
, and source term, s4 , are given in table 3.2. 

3.9 Equations for Moving Co-ordinate Frame  

The equations assembled so far in this chapter are for an 

Eulerian co-ordinate frame. As discussed in section 3.2, a more 

flexible system is required that expands and contracts between 

the cylinder head and piston top and translates with the piston 

within the piston bowl. Transformation formulae have been derived 

by Watkins (1973) for the case of a reciprocating flat-topped piston 

which requires the expanding/contracting feature but the particular 
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form of the chosen transformation is not sufficiently general for 

the present application. Nevertheless, a modified form of the 

derivation employed by Watkins can be used here. 

Firstly, new independent variables ci and c2 are introduced 

which are functions of the Eulerian co-ordinates and time, viz: 

C1 = fl(CPC2't) 

(3.60) 

q = f2(~ 1 , 2,t) 

from which it follows from differential calculus that: 

dci -
a- 

dc, + ā 	
I d~ 

+ 
atl 

dt 

	

1 	2 
2 

 

	

a 2 	ac2 	aq 
dc2 = Tel dti + a~2 —dc 

+ at dt 

ace 

(3.61) 

A variable 0 can be expressed in either co-ordinate system as: 

0(Cl,C2, t) = Wi,q, t) 	 (3.62) 

Or, in differential form: 

dc1 + 
a- d-2 + 

āt dt = arm- d~? + a 
dc2 1 	2 	1 	2 

+ ā
t 
dt (3.63) 

Inserting relations 3.61 into 3.63 gives: 

a dc + 4 dc + a1 dt - 

 

ac; 	a~ all 
acl 	1 	a~ 2 	2 āt 	a—,-"4'---1.ac l d~l + 

arm' 
k2 d~2 

+ a-~ 1 dt+ - 	? d~ +4 - 
2 dc +~ 2 dt + a~ dt (3.64) ac l at 	ac2 3 1 	1 	a~2 k2 	2 	2 at 
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By inspection, the general transformation formulae between the 

two frames are given by: 

ao   ao  aci ao a~2 

3c1 	ac1 
ac1 + 3 2 a 1 

ao 30 ani 4 a~2 
a 2 } aC1 C2 + 	2 aC2 

(3.65) 

} 	

aca 	30 3ci 	a 	
2 

a(1)
+

~ 	
+ aat 	at a2 at at 

The specification of fl and f2 (equations 3.60) determine the nature 

of correspondence between the (c1,c2,t) and (ci,q, t) 

co-ordinate systems. Watkins (1973), defined fl and f2 as: 

Cl =  fl = Z H , C2 =f2 =r (3.66) 

where z is the axial co-ordinate, zH is the instantaneous distance 

between the cylinder head and piston top and r the radial co-ordinate. 

This specification ensures that the solution domain, defined in the 

new (ri,c2, t) co-ordinate frame, is always bounded in the axial 

direction by the cylinder head and piston top. 

The specification of fl and f2 employed here is: 

= f l = 	{ k1C1 - X1 } 
 kri 

=f2= Q {-2C2 - X2} 
2 

(3.67) 

Here, Qi(t) and Q2(t) are time-varying metric coefficients whilst 

X1(t) and X2(t) are the instantaneous displacements from a time-varying 

reference position (c1 (t), C2(t)) to the co-ordinate point (ci, c2). 

Distances, ds', in the (ci,q,t) system are related to the metric 
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coefficients Qi and Q2 in a similar fashion to their Eulerian 

counterparts: 

(ds')2 = (Qidci)2 + (Q2dc2)2 + (Q3d~3)2 	
(3.68) 

(note that 
Q3 = Q3) 

The differentials of equations 3.67 with respect to cl, c2 and t are: 

Di _ Q1 

acl 	Ql 

aci 

ac2
- 0 

ace 	aX 	aQi 

at = - T { atl + ci at 

(3.69) 

ac2 - 	aX2 	, aQ2 

at 	Q2 { Tar- c2 at 

Inserting the above expressions into the general transformation 

formulae 3.65 yields the particular form: 

ao  } Q1 	 

aci 	1 aci 

a 	} R'2 	 
aC2 2 a c2 

aX 	aQl 
1 ao 

ax2 
	aQ2 1 al + (7-t— 

2 t)Q2 a 2} 
(3.70) 



+  1 2,1 a 	£2 a 
£li223{ f aT1 (i2Q3Pv1 (I) ) + 2 2(212'3 Pv2q) 
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Applying these to the general transport equation 3.59 gives: 

a(P~7 	axl + 	ail 1 a(Pc) 	ax2 
at 	( at 	~1 at) j a~j 	(at 

at2 	
(Pf) 

+ 
'2 	at )i

1 a

2 ar2 

_ £1 	a i2i3 	£1 a 	_ 2,2 a 2,
12.3 	2,2 a 1 1 ( i1 r~ 1 all) 2 ~2( i
2 

r4' 
2 62

) } - s0 = 0 

Noting that: 

xl + ~, atj)T a 	1 	a,- {i i 
( ax1 	~, 

ai1)p 

	

2 	
~} at 	1 at i1 all 	£ 	i3 aC1 	2 3 at 	1 at 

P 	
a 	aX1 	at' 

▪ £ji2t3 a 	{£22,3(at + C1 at )} 

and: 

ax2 	, ai2 1 3(76-fl _ 	1 	a 	ax2 	at' 

- (at + "
2 at )t2 Dr' 	£1Q2 a 2 {9123(at 	('2 at2)p 

ax 	at2 

+ £l2223 a~2 {2,12,3(at2 + C2 at 
)} 

(3.71) 

(3.72) 

(3.73) 

the 2nd and 3rd terms of equation 3.71 may be replaced to give: 

a -- 	p~ 	a 	ax1 	at' -i3-4; ax 	at' 
āt04) + tjt2i3 

arj 
{i223( at + C1 atl )} + t19 3  a~2{£1 2 (ate + C2 at2)} 

I 

DX, atj 
+ 
£1 223 {a-1(i2t3 Pv10) - a- ~ {i2i3( at + Cj at )p~ 

I V 	 V 
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ry 	r — 	~) } 
all Ql 	$ aL1 

vt 

ax 	at  

+ Ql 3 { a 2(Q1R3pv20) 	~2 {Q1Q3( a 2 + C2 t2)pm } 

2 R 

2'2 	0 3C2 
(3.74) 

IX 

The radii of curvature in the (cl, 2, t) co-ordinates remain 

unchanged after transformation to the (ci,c2, t) system, thus: 

~(  	(QQ 	( 	)Q k 	 Q2Q3) = 2k3 123) = 	2Q2Q3 23 l    

(3.75) 

QiQ3 a
62(Q1Q3) = 

2i23 62(QiQ3) - Q1 3 62(Qj ) 

This allows terms II and III of 3.74 to be rewritten as: 

II + III = ,42,3 { 	[Q2Q(ati + c1 atl)J + af + q at )I} 

(3.76) 

ax 	32: 	ax 	aQ' 
The quantities ff( atl + ci at) and a2( at2 + c2 at) are 

the spatial variations of the co-ordinate frame velocities in directions 

cl and t2 respectively, thus, upon integration with respect to their 
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co-ordinate directions, terms II and III represent the convective 

flux of PT resulting solely from co-ordinate frame movement. 

Integration of terms II and III with respect to cj and q and 

subsequent addition results in the surface integral of the normal 

velocity, vn, at the surface, a, of a closed but variable volume, V, 

bounded between the limits of integration, that is: 

aX 	aQ' 

2122T
3 
	I~ 	{Q2Q3(atl + C1 --t7-)1} 1 

q+dq 	aX 	aQ~ 

C2 	a 213 (at2 + c 	2)} 2 at 	
dV2} _ 	If vnda (3.77) 

where ff denotes integration over the surface. 
a 

The Leibnitz formula for differentiating an integral (Bird et al, 1960) 

may be used to express the RHS of equation 3.77 in a more convenient 

form: 

Off vnda = ~$ āt If! dV = at - Q,zik āE01 922,3) 
a 	V 	123 

(3.78) 

where III denotes integration over the volume V. 
V 

Terms I, II and III may now be combined to give: 

ātp, + —p  Q ā(Q Q ) _) Q1 Q    Ql 	āt(il k2i30 ) (3.79) 

Terms V and VIII express the variations in directions cl 

and 2 of the product of area, co-ordinate frame velocity and TT. 

If the resultant velocity of the co-ordinate frame at the location 

(Ci,q) is specified to be vg in the axial (z) direction, then the 

components in the co-ordinate directions are: 
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ax 	at 

at1 + ~1 at = vg coss 

and: 

ax2 	, at2 
at + 2 at = - vg sins 

Terms IV and V may now be combined to give: 

Q Q 2 -5-q- fQQpp(vl - v coss)T} 
1 2 3 	 g 

similarly, the combination of terms VII and VIII gives: 

Q2 a2 Q1 	
( QjQp p( 72 + vg sins)} 

Defining fluid velocities relative to the co-ordinate frame, v1 and 

V2, as: 

vl = v
) 

- vg coss 

' 2 = v2 + vg sins 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

the general transport equation can be written in the new co-ordinate 

system as: 

r 	{ aa  ( Q'Q' Q' Pi) + -ki
- 
 ( Q Q3 pV 1 (P ) + 

a~ 
( Q1 Q P" (1) )

Q1Q2Q3 	
1 2 3  

Q't' 	tit' - 
 aa

(- 3 r 	-) arm( 2 r ..)} = s ' 
1 	1 	1 	2 	2 	aE2 	cb 

(3.84) 

It should be noted that the two major differences between equation 

3.84 and its Eulerian counterpart 3.59 are firstly, that the time-

dependent term now contains the rate-of-change of volume and secondly, 

the convective terms use the velocity of the fluid relative to the 

co-ordinate frame instead of the absolute fluid velocity. 
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Transformation of the source terms for each variable in 

table 3.2 produces the result summarised in table 3.3. 

3.10 Closure  

In this chapter, alternative schemes have been discussed for 

formulating the differential equations that govern the flow and heat 

transfer in engine cylinders. The formulation that has been selected 

uses a translating curvilinear-orthogonal co-ordinate frame to 

accommodate the complex shape of the piston bowl and an expanding/ 

contracting rectilinear co-ordinate frame in the region bounded 

by the piston top and cylinder head. The differential equations 

have been presented in instantaneous and ensemble-averaged forms 

for the curvilinear orthogonal co-ordinate frame and a co-ordinate 

transformation has been described that allows it to move in a 

prescribed time-varying fashion. A turbulence model which employs 

two additional differential equations for the kinetic energy of 

turbulence and its dissipation rate has been selected to allow the 

mean flow equations to be closed and the wall boundary conditions 

for all differential equations have been given. 
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CHAPTER 4  

THE NUMERICAL SOLUīION PROCEDURE  

4.1 Introduction  

This chapter is concerned with numerical aspects of the 

method. Section 4.2 describes the disposition of variables within 

the computational grid and how the general transport equation may 

be integrated in both space and time, for both scalars and velocities, 

to give general finite difference equations. 

The method used to link the momentum, continuity and energy 

equations is fundamental to the whole procedure and is described in 

section 4.3 together with a technique for making overall adjustments 

to the pressure field to improve both speed of convergence and numerical 

stability. 

In section 4.4, the method of incorporating the boundary 

conditions into the numerical method for no-slip boundaries and 

inlet/exhaust apertures is described. 	The stability and 

accuracy of alternative differencing schemes are examined in section 

4.5 within the context of both idealised 1-d and full 2-d problems. 

The effects of both grid spacing and time step Are quantified. 

Section 4.6 indicates the differences between the strong 

and weak conservation forms of the differential equations and the 

relevance of this to co-ordinate systems with curvature. The finite-

difference forms of the source terms of all equations particular to 

the present problem, which include curvature terms in the momentum 

equations and the pressure-work term in the energy equation, are given. 
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A method is also presented for improving the stability of the method 

when high swirl rates prevail. 

In section 4.7,an heuristic scheme for improving the stability 

and convergence of the method is described. This is achieved by 

dynamically adjusting the under-relaxation factorsof the various 

equations according to the variation of the residual sources. 

4.2 Differencing of the General Transport Equation  

Fig. 4.1 illustrates a portion of the computational 

grid. The scalar quantities of pressure, enthalpy, density, turbulence 

kinetic energy, dissipation rate and viscosity, and the v3  velocity are 

calculated at the points denoted by capitals - NSEWP etc. and are 

surrounded by an imaginary control volume or cell as shown. Following 

the practice of Harlow and Welch (1965) and Caretto et al (1972) the vl  

and v2  velocities are displaced in the cl  and 	2  directions to the 

points nsew on the face of the "scalar" cell as are the control volumes 

of the former 	(the term scalar is not strictly correct, the exception 

being the v3  velocity, but to differentiate between variables located 

at the point P and the displaced velocities, this terminology will 

be retained). This has two advantages: firstly, the velocities are 

in a convenient position to calculate the convective flux across the 

cell boundaries, and secondly, they lie between the pressures, so 

providing a straightforward evaluation of the important pressure 

gradient term in the momentum equations. 



- 	f !'l '22,3 s
(1) 

dc1 dc2 } dt = 0 
V 
P 

(4.1) 
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The derivation of the finite-difference equations uses the 

finite-volume approach of Gosman et al (1969) whereby each term of 

the differential equations is integrated over the surrounding 

control volume and in time. The integration of the general transport 

equation 3.84 for a quantity q located at P can be expressed 

as*: 

1 ti-(St 	
a 

dt t { Vp āt(t1 Q2t3P$)4l d~2 

2,n r 	e
- +1 

Q2Q3 { Pvl~ 	a ~ 
} 	dc ~ 

	

2,s 	1 1 w 
2  

	

1,e 	T 	n 
+ 	t 	2 1 2'3 { pv2~ a 	

} 	c11
'1 ,w 	 2 	2 s 

where 
V 

denotes integration over the scalar control volume 
p 

surrounding P. 

To preserve clarity, the overbars (-) and primes (') are dropped 
henceforth and it should be assumed that all dependent variables 
are ensemble averaged and all independent variables refer to the 

t) co-ordinate system unless stated otherwise. 
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The first term may be approximated as: 

ti-St 

	

ōt I 	I āt(Q1 22Q3p~)d~l dc dt 

	

t 	V 

(2'16C1 226C2t3PC9n - (z16~1Q26C213p4))0 
St 

= (VPpq)n - (VppO° 
St 

P 

(4.2) 

where the superscripts n and o denote the new and old time levels 

respectively, separated by the time interval St and V
P 

is the cell 

volume per radian. The second and third terms of equation 4.1 

represent the convective and diffusive inflow/outflow of 0 across 

the cell faces in the cl and c2 directions. Focussing attention 

on the first, this may be differenced spatially as: 

C2,n 	r 	e 
I 22Q3 {pvl4) - — 8Z } 

	d~2 = F 
C2,s 	1 1 w 

r0(0 -0 ) 
s4 ase/ne {pVi41e 	(Q1"1)E/p } e 

/W  w-

r ~ -0W
{ pv1 0 	

~

l

p

lp 
a
sw/nw 	 w (Q Sc) 	 

(4.3) 

where the a's are areas given by, for example: 

asw/nw (2,2Sc22,3)w (4A) 
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The appearance of a '/' in a subscript indicates that evaluation is 

between the points indicated, thus 
(Qldcl)E/P is the distance between 

points E and P. The terma 
	

is differenced as: 
1 	1 

1 ao _  1E-~P  

Q1 all (e 	(Qla
t
l)E/P 

(4.5) 
1 ao 1 	OP-OW  

1 a 

 

- 1 w (2
1
6C1)P/W 

Defining cell-boundary Peclet numbers as: 

(pvl)e(Qls l)E/P 
Pee - 	

re 
(4.6) 

(pl)w(Qi i)P/W 
Pew - 	r 

w 

equation 4.3 may be written as: 

4)E-4)13
FC1 	ase/ne(pvl)e { 4'e 	Pee } 

0P-0W - 
asw/nw(pvl)w { ~w 

- _~ } (4.7) 

The cell-boundary densities and diffusivities are evaluated assuming 

a linear variation between their nearest neighbours, typically: 

pe = flpp + (1 - f1 )pE 

(4.8) 

re = flrp + (1 - fl)rE 
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where f1 is a spatial weighting factor, given by: 

(Q1 6C1)E/e 
f
1 
l 	

(Qi d%l )E/P 

By expressing the cell-face values of 	as: 

4)E-(1)P (1)e - -ee _ (1 - ae)$E + ae(PP 

- 1/13-4/w _ 
(/)%4 	 Pew 	aw(I)w + (1 - a)d)(1)P 

equation 4.3 becomes: 

FC1 
x a

se/ne(pvl)e.{ (1 - ae)(I)E + ae ~p } 

- asw/nw(Pvl)w { aw(Pw + (1 - aw)(1)13 

(4.9) 

(4.10) 

(4.11) 

The quantities ae and aw are weighting factors to be defined later. 

The time level at which the various quantities in this 

term are to be evaluated has not as yet been specified and to 

complete the integration a temporal weighting factor ii is introduced 

such that: 

t+dt 

St f 	Fc1dt 	
l,t 	nFq + (1 - t 

(4.12) 

The final form of the second term of equation 4.1 is then given 

by: 
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F~l,t 
ti n 

ase/ne(pvl)n 
{(1 - ae)OĒ + ae ~p} 

- '~asw/nw(pvl )w {aw~W + (1 - aw p 

+ (1-n)ase/ne(p1 )e {(1-c )4 + ct P} 

- (1-n)asw/nw(01)w { a wow + (1 -aw)Op } (4.13) 

The third term of equation 4.1 is treated in a similar fashion, 

resulting in: 

t4-(St 
E1 ,e 

= Fr
2't 	nan 

	(Av 2)n {~.l-an)~N + an Yp } 

-'nasw/se(pv2)s { ass + (1-4414P} 

+ (1-f)anw/ne(pv2)n { (1-44 + an~P } 

- (1-rt)asw/se(pv2)s { as° 	+ (1-as)yF } (4.14) 

The form of the last term of equation 4.1 depends upon the 

variable under consideration and for the present, will be represented by: 

t+S t 
1 
St f I s~dVdt = S

0 t Vp 

Adding the constituent terms and substituting it = pair, 

the final form of the general transport equation is: 

(4.15) 

1 
~t 	I 	£i 23 { pv20 - 	ā 2 }s d~l dt 

l,w 
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PP 	PP  
St 

+ { n(1-4)thē4)Ē +(1-n)(1-ae)meeE} 

- { nawrhw~W + (1-n) awfiw~W} 

+ {n(1-arldri N + (1-n)(1-an)rhn4 ) 

- { nasrhsts + (1-n )asfisgs } 

+ n{aerhe - (1-aw)rhw + anrhn - (1-as)rhs } PP 

+ (1-n) {aerē - (1-aw)11w + anthn - (1-as)0s} (PP 

- S4 =0 

This equation can be written in more compact form as: 

APPP = CAe4e + cAc~c + Apop 
+ S

ck 

where the subscript c denotes summation over the surrounding 

points NSEW and the coefficients are given by: 

(4.16) 

(4.17) 
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An = - 
n(1an)mn 

AS = not Stns 

An _ -n(1-ae)me 

Aw = n awmw 

A° N _ - (1-n)(1-a°)m° 

A° = (1- n) sms 

AĒ = - (1- n)(1-ae)me 

AW = (1-1 awmw 

Ap = Ti {aeme - (1-aw)m +amm~ - -a )m } 

(vpp)n 
+ ot 

A° = - (1-n) { aeme - (1-a.)mw + amm~ - (1-as)ms } 

+ (v p) 
St 

Treatment of Momentum Equations  

The integration of equation 4.1 when it is taken to be one of 

the momentum equations differs from its scalar counterpart in that 

(4.18) 
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the control volume is split between two half scalar cells (see fig. 

4.1). Thus, for example, the first term for the direction-1 equation 

is integrated as: 

t+S t 

St f 	f a(Q1Q223p~)dcl drs dt 
t 	Vw 

S 
1 mv 

 --- wnw/wsw/sw/nwPW w)n+ 	(Vnw/sw/s/nppOw)n} 

- {(Vwnw/wsw/sw/nwplow)o + (Vnw/sw/s/nppxw)o}] 
	

(4.19) 

where for example 
Vwnw/wsw/sw/nw 

is the volume bounded by the 

subscripted vertices and q stands for vl. 

The mass flow rates in the cl direction, which arise from the 

integration of the second term of equation 4.1,are evaluated assuming 

a linear variation between neighbouring velocities, typically: 

(v1,ww+v
1,w) 

thW = PWawsw/wnw 	2 

with a similar assumption for the cell face Peclet numbers: 

(vl,ww+vl,w) (Q1S~1)w/ww Pew = pW 	2 	
rw 

In the 2 direction, the mass flow rates are obtained from a 

summation of the various contributions; for the south cell face 

this is: 

(4.20) 

(4.21) 
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SW 	awsw/sw { p SW f
2 + PW(1-f2)} v2,wsw 

+ asw/s {pS f2 
+ pp(1-f2) } 17

2,s 

The quantity f2 is a spatial weighting factor whose specification 

provides a linear variation of scalar variables between SW to W 

and S to P, and is defined in a similar fashion to fl, that is: 

(Q2S2)P/
s 

f2 	(2'26C2)P/S 

The 
c2 

direction Peclet number is calculated from: 

pswv2,sw(92"2)ssw/w  
Pe

sw - 	r 
SW 

(4.22) 

(4.23) 

(4.24) 

where psw is obtained from a weighted average of surrounding 

values: 

psw = fi {pSWf2 + p
W(1-f2)} + (1-f1 ) { pSf2 + pp(1-f2)} 	(4.25) 

with a similar expression for r
sw. 

v2,sw is also a weighted average, 

in this case of 
v2,wsw 

and 
v2,s' 
 • 

v2,sw 	 l2,wsw + 
(1-f

l)v2,s 
(4.26) 

When cast in the form of equation 4.17, the 
	
direction momentum 

equation is: 

Awv~,w = 
cq cv1,c + c~cv1,c + Awv~

,w 
+ Sv1 

(4.27) 
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where the summation convention is over points ww-e-ssw-nnw and the 

coefficients are given by analogous relationships to 4.18 except 

with the changes already indicated. 

Similar reasoning applied to the integration of the direction-2 

momentum equation produces: 

Asv2,s 	cAcv2,c 
+ 
cAc2,c 

+ AsV2,s + Sv2 (4.28) 

The finite-difference equations for v1 and v2 may be rearranged 

so that the dependent variables are the velocities relative to the 

co-ordinate frame, that is, Vi = vl-vgcos$ and v2 = v2 + vgsinf3. 

The advantage of this is that as the relative velocity is needed more 

often during the computations, it is more efficient to work with it 

directly. When this is done the equation becomes: 

nun = Anvn + 	A°v 	+ A°v ° 	+ S ' 	 (4.29) Aw l,w 	E 
c c l,c 	c E 

c l,c 	w l,w 	vl 

where the 'source' term is now: 

Sv1 = Svl + EAn(vg cos~)c + EAc(vgcosg)c 

- AW(vg  cos f3)w + AW( vg cos f3)W 

	

and similarly for the 	2 direction momentum equation: 

An-n = EAnvn 	+ EAo v o + A° v ° + S ' 
's "2,s 	c c 2,c 	c c 2,c 	s 2,s 	v2 

(4.30) 

(4.31) 

where: 

Sv2 Sv2 - cAc( vg sing)c - cA c(vg si ns)c 

+ As(ugsln f3)5 - As(ugsiWs)s (4.32) 
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4.3 Solution of the Momentum, Continuity and Energy Equations  

For low Mach number flows and in the absence of combustion, 

the linkage between the energy equation and the continuity and 

momentum equations is relatively weak on a local basis, although 

the overall changes in temperature and pressure are important for 

a gas undergoing compression. The velocity field is however strongly 

dependent upon small spatial variations (in comparison with the mean 

level) of pressure. The technique used to link the momentum and 

continuity equations, due to Chorin (1968) and Caretto et al (1972) 

is an iterative "guess and correct" procedure. The method is often 

referred to as the SIMPLE algorithm, standing for Semi-Implicit 

Method for Pressure-Linked Equations. The first step in deriving 

the equations is to express each dependent variable 	in terms of 

an approximation, labelled (0*), and a correction value, denoted (4'), 

thus: 

p=p*+p' 

P=p*+(aP)T p' = P*+ Qp' 

vl = v~ + 1 

v2 = v2 + v2 

(4.33) 

(4.34) 

(4.35) 

If the momentum equations are solved with the approximate pressure 

field p* inserted then the velocity and pressure fields satisfy 

e.g. for direction-1: 



A
w
n ,vi..-1..11k. 

v vl,w 	cAc,v vl,c } cAc,v vl,c + Aw,v vl,w 1 	 1 	 1 	 1 

+ Rw,vl 	
{ nanw/sw(pp - pw)+(1-n)anw/sw(pp po)} 	(4.36) 

where the pressure gradient contribution to the source term has 

been extracted, so that: 

Svl = Rw,vl 	anw/sw(pp Pw) 

	
(4.37) 

The superscript (n) has been dropped and those variables with (*), 

(') or without superscript refer implicitly to the advanced time-

level value. The subscript v1  has been attached to the coefficients 

to associate them with this particular momentum component. The 

'correct' velocity and pressure fields will satisfy 

nw
n 

	vl,w 	cAc,v vl,c + cAc,v vl,c + Aw,v vl,w l 	 T 	 1 	 1 

+ Rw,vl 	{ nanw/sw(pp-pw) + (1- r1la
nw/sw(pp-pw)  } (4.38) 

Subtracting equation 4.36 from the above gives a relation between 

the velocity and pressure corrections thus: 

An 	.1-.01, 	= EAn 	v' 	- nan 	1 _ 
w,vl 1,w 	c c,vl 1,c 	nw/sw(pp pw)  

(4.39) 

If it is assumed that: 

cAc,vii,c 1 	
« 1 n anw/sw(pp-pW) 1 

then the correction velocity can be written in terms of the correction 

pressures as: 



Z/ 	 i* 	nasw/se(pp p) 
2,s = 2,s 	An 

s,v2 

(4.42) 
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v 1 ,w — 

n 
- nanw/sw(Pp_ PW ) 

(4.40) 
An 
Aw,vl 

 

hence, from 4.35: 

~ 
v1 ,w = v* 1,w nanw/sw(pp-pW) 

An 
Aw,vi 

(4.41) 

From similar reasoning, the equivalent result for the 2 direction 

is: 

The expressions4.41 and 4.42 together with equation 4.34, which 

links the density and pressure corrections, may be inserted into 

the finite-difference form of the mass conservation equation to yield 

an equation for the p'. Before this is done however, a further 

temporal weighting factor, K, will be introduced, having the same 

significance as n but applying only to the continuity equation. This 

allows a different temporal weighting for the various equations, the 

reason for which will become apparent later. 

The finite-difference form of the continuity equation 

is obtained by setting qt. = 1 and Sco = 1' 4) = 0 into the integrated 

form of equation 4.1, which, after substitution of equations 4.41, 

4.42 and 4.34 is: 
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St 

a 

+ 	anw/ne { v2,nQpn - rip* 
Anw/ne (p1-p;)} 

n,v2 

an 
an 	{ v* 	l _ 

	* sw/se 	, _ , 
sw/se 	2,s QPs 	'c p s An 	(Pp PS)} ,~  

s,v2 

an 
~ 

+ K ase/ne { vj ,eQPe 	- "e 
Ane/ne  (P~ E-P p)} 

e,vl 

an 

	

Kasw/nw { vj,wQPw 	r1Pw 
Anw/nw(pp-P01 

w,vl 

* n_ 	o _ { 
(vPpō t 	

(~pp) 	} +{ -Kmn - (1-K)dl 

+ Kt* + (1-K)tits - Kt* - (1 -K)df + Kt* +(1-K)rfiw} 

(4.43) 

Defining a cell face Mach number as: 

M 	v at - *Q 

AD v 
(4.44) 

where, for example: 

Dv,n = 	n 	
(4.45) 

An,v2 

and noting that the RHS of equation 4.43 is the local mass imbalance, 

na
n 
nw/ne 
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denoted by Spa the equation for p' can be rewritten as: 

(VpQp')n 

St 

n PN- + K Qv 

	

	 2-   
2 a 

	

,n nw/ne { Pn 	Ma 
n 

~* 	— p`pS 
K Qv

2,s a w/se 	{ Ps 	Ma2 

PE PP 
+ K Qvi

,e ase/ne { Pe 	Mat 
	 } 

PI-
p

1 
- K Qvl

,w asw/nw 
{ pw 	Mp 2W } 

=S, 	 (4.46) 

By analogy with equation 4.10,the cell face values of p' are replaced 

by, for example: 

PN
-p. 

pn 	Zp - (1-an)pN + anp' 
Man 

(4.47) 

resulting in a final form of the p' equation as: 

s 

e 



- 115 - 

(V QPp)n 
St 

+ KQv
2,n anw/ne {(1-an)PN + an pi } 

- KQv2~s a
n 
sw/se 	{asp' + (1-as )p1} 

+ KQv
1,e ase/ne {(

1-ae)Pt + aepp} 

- KQv1,w asw/nw {awpw 
+ 
(l-aw)P 1 	= S , P  

(4.48) 

The above equation may be written in analogous form to 4.17, that 

is: 

Ap p = 	cAcp c + 	Sp , 

where the coefficients are: 

A
n 
AN = - KQv2,n anw/ne (1-an) 

An AS = KQv
2,s asw/se as 

An 
AE _ - KQvl,e an 	

(1-ae) 

~* 
Ann = K Qv

,w as
n 
w/nw aw 

(4.49) 
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An _ (VpQ)n  
p 	at 

+ KQv* an 	a - 1417/* 	an 	(1-a ) 2,n nw/ne n 	2,s sw/se s 

+ KQv1 	an 	 (ft  a  e - K Qv1,w asw/nw(1-°fw) , e  

*n 	o 

Sp' = - {(Vpp St
-(Vpp) 
	 } + { -Klhn - (1-K)mn 

+ KM + (1-K)ts - Kme - (1-K)te + Kl1 ] + (1-K)tw } (4.50) 

Overall Pressure Adjustment Procedure  

A method that has been found to improve the convergence of 

the numerical method is to adjust the overall pressure level before 

making the much smaller local adjustments required to achieve a local 

continuity balance. Following the practice of Watkins (1977) an overall 

pressure correction, p", is defined in a similar fashion to the 

local pressure correction (equation 4.34) as: 

p = p* + Qp" 	 (4.51) 

Replacing n by in equation 4.16, setting 0 = 1, t = 0, Sc  = 0 

and summing over the entire solution domain gives: 

E (Vp) 	(Vp) p 	n + 	q 
o 

F 	St 
	 + K fib  (1-K) 	 =0 (4.52) 



- 117 - 

where 
F 
 and 

 b  denote summations over the whole field and boundaries 

(inlets and exhausts) respectively (Note that the summation of rh's 

is also over the entire field except that the sum of all "internal" 

mass flows is zero, the net effect being due solely to the boundaries). 

Substituting the correct density from equation 4.51 into equation 

4.52 yields: 

(Vnp*)p 	(Vp)
p + pli E 

VpQ  

F 	St 	F 

+ K b mg  + (1- K) 	rh°b  + Kp" 
b 

Q 	a AvA  =0 (4.53) 

where quantities aA  and vA  are the areas and velocities at the 

apertures. Rearrangement of equation 4.53 gives an expression for 

the overall pressure adjustment: 

p'1 

(Vnp*) ..(Vp)o 

.'
{F 	P  St 	p + K 	Fhb + (1-K) b t°°  } b  

(4.54) n 

E VpQ K EQ 
F St + b aA vA 

 

The improvement in performance achieved with this 

adjustment scheme is demonstrated by fig. 4.2 which shows the variation 

of log10(mass residual), a quantity representative of the degree of 

convergence of the continuity equation, for a typical calculation 

with and without it. It is clear that the rate of convergence, indicated 

by the gradient,is superior when the overall pressure adjustment is 

operative, the residuals from the two schemes differing by 1 order of 

magnitude at 30 iterations and the differential increasing thereafter. 
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A variant of this scheme which provides for simultaneous adjust-

ment of the pressure and temperature by invoking overall energy conservation, 

detailed by Watkins (1977), has not been found to given any further 

advantages over the more simple pressure adjustment described here. 

Local Velocity and Pressure Adjustment  

The procedure for this is as follows: first, the two momentum 

equations (vl  and 	are are solved with the guessed velocity and pressure 

fields; their solution provides the q and v2 velocities and the 

quantities Dv  (equation 4.45) used to calculate the coefficients of 

the p' equation. The solution of the p' equation provides firstly 

a correction to the pressure field, for subsequent re-use in the momentum 

equations and secondly, using the linearised form of the momentum 

equations 4.41 and 4.42 , a correction to the velocity field such 

that continuity is satisfied; the densities are also updated at 

this stage (equation 4.34). The remaining equations for v3, h, k and s 

are then solved, so completing the iterative cycle. The steps are 

summarised below: 

1. Iterate on the 	momentumm equation. 

2. " v2  momentum equation. 

3. 11 	H
" p" and p' equations. 

Correct Vl'  V2,  p and p. 

4. Iterate on the v3  equation. 

5. H" h equation. 

Correct p and 	ap/ap. 
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6. Iterate on the k equation. 

7. " 	" " s equation. 

8. Check for convergence: if not converged return to step 1, 

otherwise start the next time step. 

Solution of the Finite-Difference Equations  

The set of simultaneous equations for each variable is solved 

using a form of block iteration. The equations for the grid nodes 

on each cl = constant or c2 = constant line are assembled into a 

tri-diagonal matrix by temporarily assuming that values on neighbouring 

lines are known, as in the Gauss-Seidal method. The tri-diagonal 

matrix is solved in an implicit fashion using the Thomas algorithm, 

a particular form of Gaussian elimination (see appendix 2 ). Adajcent 

lines are treated in a similar fashion until the whole field has been 

scanned. Full convergence of the calculation is not required and a 

few scans, typically 3, of the above procedure suffices. 

Convergence Criteria  

The solution is assumed to have converged when the sum of 

the normalised absolute residuals for the ',.:(
l' 
 v2  and p' equations 

have fallen below a specified level, usually 10-3. Experience 

has shown that if the aforementioned equations have converged 

adequately then the remaining equations, namely those for v3, h, k 

and c,have also converged. Referring to the general finite-difference 
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equation 4.17 the sum of the absolute residuals for the field R(1) 

is given by: 

R Ē 1cAC~c + Ac~c + Ap~p S~ - Ap'vp (4.55) 

Normalisation of R
(1) 

for the pressure correction and momentum 

equations requires a reference mass and momentum respectively. For 

the former this quantity, denoted Np „ is given by: 

N 1 = p.max(vm, IvF,max1, MI) (4.56) 

where p is a time varying density at a reference location in the 

field (The location chosen is not important as the spatial variations 

of density are small) and vm, IvF maxi and Iv1 are respectively the 
, 

mean piston velocity, the absolute value of the maximum fluid velocity 

in the field and the absolute instantaneous piston velocity. The 

normalisation momentums,N-1 and Nit are defined in terms of the 

same quantities, i.e.: 

N- = N- = 	p.max(
vm, vF,max,vI) 1 	2 

(4.57) 

A further convergence criterion is also applied, in this 

instance to the rate-of-change of the vl and v2 velocities at a 

location in the centre of the flow field. Convergence is assumed 

if Ivi-1 - v'I and Iv
i-1 
	v21 are both less than 10-3, where 

1 	1 	2 - 2 

superscripts i-1 and i refer to values on successive iterations. 

If either of the above criteria are satisfied, it has been 

found that values for all variables at the chosen location differ 

by approximately 10-3 or better from those on the previous iteration 

and convergence is assumed. 
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4.4 Boundary Conditions  

Wall Boundary Conditions  

For each variable, the coefficient Ac in equation 4.17 that 

would normally link the internal grid node to that at the boundary is 

set to zero and appropriate terms that invoke the boundary conditions 

described in section 3.7 are inserted into a linearised form of the 

source term Sco, given by: 

S
ct, 
= S~n + SE (4.58) 

where the subscripts I and E refer to the implicit and explicit 

contributions respectively. A sufficient condition for stability is 

that SI is negative (Gosman and Pun, 1974). 

Momentum Equations  

The resultant wall shear stress, Tw, is evaluated from either 

equation 3.40 or 3.43 depending on the value of y+. The components 

of Tw, denoted generally by Tij and given by equations 3.45 are 

calculated and the term T...ac; where ac is the cell face area over 

which Tib acts, is inserted into the linearised source term 

(equation 4.58). 

e Equation 

The value of e at the near wall grid node, denoted ew, is 

evaluated from equation 3.49. To ensure a remains fixed at this 

value, SI and SE of the linearised source term (equation 4.58) are 

ascribed the following values: 
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S1 = L 

SE = L.ew 

where L is a large number, typically 1030
. 

k Equation  

The usual expression for the shear stress contribution to the 

generation rate that would act in a direction tangential to the boundary 

(see table 3.3) is replaced by equation 3.50, Tw being evaluated 

according to the y+ value. 

h Equation  

The wall heat flux qw is calculated from equation 3.52 or 

3.54 according to the y+ criteria. The temperature gradient 

dTw 
ay is evaluated from: 

dT 	T w _ w 

7y 	
yp 

where Tw and T are the temperatures of the wall and gas at the internal 

grid node adjacent to the wall respectively. 

The quantity~w.a
c 
is added into the linearised source term 

(equation 4.58). 
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p' Equation 

The normal velocity at the boundary is prescribed and this 

requires that the normal gradient of p" is zero, i.e. āy"  = 0. This 

is done by setting the appropriate Ac  in equation 4.49 to zero. 

Inlet/Exhaust Boundary Conditions  

In order to simulate complete engine cycles, a treatment is 

needed for the intake and exhaust processes. It is accepted that in 

"real" engines, valves offset from the centreline of the cylinder 

play an important role, together with the shape of the inlet tract, 

in generating both swirl and turbulence and that an axisymmetric 

representation is not capable of accurately modelling these effects. 

Nevertheless, there are important reasons why a valve should be 

included in the simulation: firstly, there are measurements available 

in motored engines with axisymmetric valves that can be used for the 

very necessary validation of the prediction method, and secondly, 

it is expected that the two-dimensional valve representation will 

provide some insight into real engine phenomena. 

The measurements available for validation, described in 

chapter 2,apply to engines with very different types of valve. 

Morse et al 	(1978) have used an annular orifice in a fixed position 

and flush with the cylinder head whilst the engine of Witze (1976c) 

is equipped with a moving poppet valve. Boundary conditions for 

the in-cylinder calculation must be provided somewhere, and the choice 

as to where is balanced between what is realistic and what is 
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computationally possible, within reasonable limits. The arguments 

against extending the calculation through the valve opening and into 

the inlet tract are the difficulty in fitting a computational grid 

to what is invariably a complex 3-d geometry and the prohibitive 

additional grid requirement, necessary to adequately resolve the 

detail. The alternative is to specify or calculate the fluxes of each 

variable entering or leaving the cylinder at the valve opening. This 

can be achieved if the instantaneous mass flow rate, m, through the 

valve can be calculated, and if the values of the various turbulence 

quantities,temperature etc. are known in the manifold and their 

spatial distribution across the valve can be prescribed. 

If the engine speed is sufficiently low that compressibility 

can be ignored then m can be calculated according to the amount 

of fluid displaced by the piston (Watkins, 1977). This is not 

generally the case however and resort is therefore made to determining 

m from a compressible-flow orifice-type of equation that relates rfl 

to the pressure drop across the valve, as in cycle program analyses (see 

e.g. Whitehouse et a1,1962). The equation used depends upon the flow 

regime prevailing at the valve orifice, which in turn depends upon 

the pressure ratio between the cylinder and manifold. For subsonic 

flow, which requires: 

(4.59) 
u 

rfl is given by: 

dm 	2 	pd 2/Y 	
pd 
 Y-1 	1/2 

m = 
	- Aeff pu {yRT

u 	(pu) CHI-7)—n} )} (4.60) 
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and for sonic flow: 

(4.61) 

m is obtained from: 

r+1 
m m 	= Aeffpu { yRTu( + -)  T 

} 
1 2 

(4.62) 

where A
eff is the effective area and the subscripts u and d refer to 

upstream and downstream conditions respectively. Sonic flow through 

the valve orifice is rarely encountered in motored engines and usually 

only exists during the initial stages of exhaust blowdown in fired 

engines, however allowance is nevertheless made for its occurence in 

the calculations. The manifold conditions of pressure and temperature 

are here assumed to be constant with time although better account 

may be taken of their temporal variation either by using a "filling- 

and-emptying" type of calculation (Johns, 1975) which assumes the manifolds 

to be of finite volume and linked to atmosphere by another orifice 

or by solving the 1-d unsteady continuity, momentum and energy 

equations that govern the manifold wave action (Benson et al, 1969). 

Equations 4.60 and 4.62 are integrated numerically using a 

forth-order Runga-Kutta method over the same time interval employed 

for the main finite-difference equations but before the latter are 

solved. An implicit assumption in this approach is that the cylinder 

temperature remains constant over the interval of integration 

(typically 1 0-30) as equations 4.60 and 4.62 are not solved simultaneously 

with the energy equation. The temperature changes during intake 

and exhaust are not appreciable for motored engines, typically 

l0K/30  crank angle. With a gas temperature of approximately 



- 12 6 - 

3000K, the error thereby introduced into the calculation of the mass 

flow rate, Efi, as a result of this assumption is estimated to be: 

Em  = 1 1 - { 	11 	x 100 =.17% 

The mass inflow or outflow , 6m, obtained from the integration of 

equations 4.60 and/or 4.62 is used to calculate the velocity 

through the valve from: 

v 	
6m  

pu Aeff  
(4.63) 

The specification of the spatial distribution of all 

variables in the incoming flow depends upon the specific application 

and is described in this context in a later chapter. 

Application to Specific Geometries  

The Engine of Morse et al (1978) 

The grid employed for the fixed-orifice engine of Morse et al 

(fig. 2.18) is shown in fig. 4.3 for the flat-topped and bowl-in-piston 

configurations. Uniformly spaced grids are used in the axial 

direction in the cylinder and piston bowls but grid lines have been 

concentrated around the inlet in the radial direction to improve 

the resolution in this region. It can be seen that this unavoidably 

produces excessively fine grids elsewhere in the field, for example, 

adjacent to the wall of the piston bowl. Boundary conditions are 

specified in the plane indicated. 
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The Engine of Witze (1976c) 

The additional complication of valve movement in this geometry 

(see fig. 2.15) requires a different form of grid. In the first 

numerical simulation of this experiment,Watkins (1977) assumed the 

flow to enter in the plane of the cylinder head and the valve to be 

represented by fixed grid lines such that the orifice area was not 

time-varying. The density of the incoming flow was adjusted according 

to the ratio of (true instantaneous valve area)/(value area defined 

by fixed grid lines) to procure correct mass and momentum flow rates. 

The approach adopted here is to accommodate the protrusion 

of the valve into the cylinder by inserting a fixed number of additional 

axial grid lines between the valve and cylinder head and to apply 

the boundary conditions along the cylindrical surface extending from 

the periphery of the valve to the edge of the valve seat. This process 

is illustrated in figs. 4.4 and 4.5 which show respectively the grids 

used for the flat cylinder head and bowl-in-head configurations. 

The valve head is always represented by the same grid line, thus 

the grid lines in the cylinder head either side of the valve head 

grid line expand and contract with the valve motion. The aforementioned 

additional grid lines are only operative when the valve is open. 

At the instant of valve opening, values of the dependent variables need 

to be prescribed along the newly-inserted grid lines. In the case of 

h, p, k and e, there are ascribed the values on the grid line adjacent 

to the cylinder head immediately prior to valve opening whilst the 

v1,  v2  and v3  velocities are set to zero. 
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4.5 Stability and Accuracy of Alternative Differencing Schemes  

This section examines the properties of alternative ways of 

differencing the general transport equation although special emphasis 

will be placed on the momentum and continuity equations as they 

are strongly coupled and the stability, accuracy and convergence of 

their solution procedure determines the performance of the method 

as a whole. The factors affecting the performance are: firstly, 

the ways in which the equations are linked although this aspect 

has largely been determined (see section 4.3), and secondly, the 

specification of the parameters a, n and K in the finite-difference 

equations. It is toward determining a suitable combination of 

the latter that attention is now turned. 

Before examining specific schemes, it is worthwhile discussing 

the effect of these above-mentioned parameters on the relative 

magnitudes of certain terms of the finite-difference equations*. 

1. The factor a determines the relative importance of the 

convection and diffusion terms. The most widely used 

specifications are: 

(a) a = 	Central differencing (as derived from a 

Taylor series) 

(b) a = 1 	Pe > 0 	Upwind differencing (first pro- 
} 

a = 0 	Pe < 0 	posed by Hellums and Churchill, 

1961). 

(c) A combination of (a) and (b). 

*To preserve clarity, the discussion here relates to equally spaced 
grids. The results are equally applicable to non-uniform grids 
with the inclusion of appropriate weighting factors. 
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2. The quantities n and K define the temporal differencing 

of terms in the momentum and continuity equations 

respectively. There are three widely used alternatives, 

these being: 

(a) n(K) = 0 	Explicit (evaluation using 'old' time 

level values) 

(b) n(K) = ~ Time-centered or Crank-Nicholson (an 

average of 'old' and 'new' time-level 

values). 

(c) n(K) = 1 	Implicit (reliance on 'new' time-level 

values). 

The alternatives in (1) and (2) produce a large number of 

permutations and a detailed study of the possibilities is clearly 

a major undertaking (in fact the problem can be taken still further 

by providing different temporal weightings for the convection and 

diffusion terms 	(Runchal, 1977)). A further hindrance in the 

evaluations of these alternative schemes is that analytically 

derived expressions and criteria for accuracy and stability are 

difficult, if not impossible, for the coupled equations and resort 

is therefore made to simple analytic tools and numerical testing. 

These latter methods can however provide considerable insight into 

the performance of the overall scheme and it will be demonstrated 

that results obtained in a simple one-dimensional analysis are at 

least qualitatively applicable to a full two-dimensional solution. 
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Spatial Differencing  

Studies by Spalding (1972) and Raithby and Torrance (1974) 

have shown that the use of solely central or upwind differencing can 

cause erroneous results if proper account is not taken of the value 

of the Peclet number (equation 4.6). By obtaining an analytical 

solution to the particular case of the 1-d steady form of the transport 

equation, i.e.: 

dlt1 d2t  
GZ 	 dz 

(4.64) 

it has been demonstrated by Spalding (1972) that a specification of: 

a 	_ {e-Pe/2 _1}-1 
e  (4.65) 

with a similar expression for aw  (equation 4.10) produces identical 

numerical and analytic solutions for 4 ( this does not imply an 

exact solution for the 2-d case). An alternative to the direct use 

of this expression, which involves the time-consuming evaluation of 

an exponential, is a piecewise fit of central and upwind differencing 

schemes. This is: 

7 
+ 15T 	for 'Pei  < 2 

1 	for Pe > 2 	(4.66) 

0 	for Pe < -2 

This scheme enhances the stability of the numerical method by 

virture of the presence of positive coefficients in the finite-

difference equation 4.17, thus the coefficient matrix is always 

diagonally dominant (Roach, 1972). 
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The accuracy of this scheme can however be poor under certain 

conditions when it is used for multi-dimensional flows. Errors arise 

when the grid is not aligned with the dominant flow direction and they 

are propagated in a direction normal to the flow. Thus, recirculating 

flows or an inappropriate grid orientation in uni-directional flows 

can produce solutions substantially in error. This problem has been 

recognised by Raithby (1976) among others, who proposed a two-dimensional 

'skew' scheme that takes better account of the upstream direction. 

Although encouraging, it was noted by Raithby that under certain flow 

conditions the matrix of coefficients could become non-diagonally 

dominant and numerical stability could not therefore be guaranteed. 

However, further work in this area should result in improved spatial 

differencing schemes. 

Temporal Differencing Schemes - Assessment of Stability  

Explicit schemes involve a stability requirement that the 

Courant number (vf+va)St/Sx should remain less than unity (Courant et al, 

1967). In the context of the present problem, assuming the following 

engine and computational conditions: 

- 1000 rev/min 

- Peak inlet velocity (vf) of 100 m/s 

- Sonic velocity (va) at 300°  K = 347 m/s 

- Radial grid spacing in 9 cm bore engine with 30 equally 

spaced radial grid lines = 1.5 mm 

would require less than 0.02° crank angle steps for the Courant number 

to equal unity. This is clearly unacceptable and for this reason alone 

explicit schemes can be rejected. 
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The most popularly-employed alternatives remaining are the 

fully-implicit and time-centred formulations. A formal stability 

analysis of the coupled finite-difference equations arising in the 

present study is extremely difficult but the examination of a single 

equation is feasible and can yield useful qualitative information. The 

analysis presented below is, in essence, similar to that attributed 

to Von-Neuman and published by O'Brian et al (1951) whereby the pro-

pagation of errors can be expressed in terms of an 'amplification 

factor', which describes their growth or diminution as the solution 

proceeds. The equation examined is the one-dimensional form of the 

mass conservation equation (3.16) with the features of the present 

problem. This equation is: 

40-110)  + a  l (p l) = 0 (4.67) 

The time-centred approximation is obtained by setting K = 1/2 and, 

when continuity is satisfied, p' = 0 in equation 4.49 to give: 

(21P)n  - (QiP)° 	1 	n 	o 

St 	+ 2 {{(01 )e + (01 )el  

- {(Pvl)W + (Pvl)w }} = 0 	(4.68) 

If a sinusoidal specification of piston motion is made, i.e.: 

zH  = Ao  + Al  (1 + cos t) 
	

(4.69) 

where zH  is the instantaneous distance between the cylinder head 

and piston top, Ao  is the TDC 'bumping clearance' and 2A1  is the 

stroke, the density/volume 	relationship may be written as: 

(zHp)n = (zHp)° 
	

(4.70) 



C2(t) _ - 	Ao + A1 (1 + cos t) 

Ao+A1 (1 + cos t cos St - sin t sin St) 
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from which it follows: 

A
n 

- Ao+A1 (1 + cos t cos St - sin t sin St) 

Pn 	Ao + A1 (1 + cos t) 
(4.71) 

The specification of (21 )n and (Ql)° determine the local relative 

movement of the grid lines. If those quantities are equal, as they 

are in the piston-bowl region, then they can be replaced by a 

constant, Sz. Substituting this value and the density relationship, 

equation 4.71, into 4.68 gives, after rearrangement: 

6/-1,e - v
l,w)n = C1(t) + C2(t) 6;1,e - ~1,w)° (4.72) 

where: 

20z 	cos t (1- cos St + sin t sin St 
C1 (t) = - St Al { 	A0 + A1 (1 + cos  t) 	} 

(4.73) 

If an error, E, which may arise through roundoff or other numerical 

approximation is now introduced into the solution such that: • 

0 	
0 E° 

(vl,e - vl~w) = (vl ~e - vl ~ w)C + E (4.74) 

where the subscript C denotes the correct solution, then the error 

at the new time level, En, will be given by: 

En = C2(t)E° 	 (4.75) 

Noting that C2 is always negative, the error at time level t + mSt 

is given by: 
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Em = IEm-1 I(-1)m  C2(t + mSt) 	(4.76) 

The quantity C2(t + mdt) may be regarded as an error amplification 

factor, relating the magnitude of errors on successive time steps. 

Inserting the values Al/A0  = 10 which corresponds to a compression 

ratio of 21:1 and Sz = A
1
/10 into expression 4.73 and 4.76, fig. 4.6 

shows (-1)mC2(t + mSt) plotted against non-dimensional time, t*, 

defined as t* = t/t0  where t0  is the time for 1 cycle, with St 

equivalent to 3°, 6°  and 12°  increments. There are three points to 

note: firstly the magnitudes of C2  before and after TDC (t* = .5) 

are less than and greater than unity respectively, indicating that 

errors would be attenuated and amplified either side of TDC; secondly, 

the variation is oscillatory in nature, due to the (-1)m  term 

(although for clarity, successive solutions are only shown for the 

start of the 6°  case); and thirdly, the magnitude of C2  increases 

with increasing St after TDC and decreases with increasing St before 

TDC. The solution of equation 4.74 is shown in fig. 4.7 in which 

(vl,e - v1,w
)n is plotted over 1 cycle. As expected, the solution 

is oscillatory with an increasing amplitude during the period t* = .5 

to t* = 1 (although not shown, the oscillations are damped during the 

period t* = 1 to t* = 1.5 on the successive cycle (IC2I < 1)) also, 

the amplitude of oscillation increases with increasing time step. 

Similar performance of the Crank-Nicholson scheme has been found by 

Wood (1974) and, Patankar and Baliga (1978). This behaviour is often 

termed 'inaccurate' and not 'unstable', however whatever the terminology, 

it is clearly unacceptable. 

The fully implicit scheme is unconditionally stable. If sufficiently 

small time steps, of the order 1°-2°, can be used, then the choice 
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between implicit and time-centred schemes will depend upon their 

relative accuracy (which will be examined below); for larger time 

intervals however the latter must be rejected on grounds of stability. 

Temporal Differencing Schemes - Assessment of Accuracy 

The existence of an analytic solution for the coupled one-

dimensional momentum, continuity and energy equations provides a 

basis for comparing the accuracy of alternative differencing schemes. 

The solution, obtained by Watkins (1973), requires that the v2 and 

v3 velocities are zero, the boundaries are adiabatic and the piston 

is slow moving such that the density, molecular viscosity and thermal 

conductivity are spatially uniform. The governing differential 

equations are then: 

Continuity 

āt(Qlp) + a l(pvl) = 0 

Momentum - direction 1  

~a )+ 	
3 
	

av 
Qlpvl  	 p1/1v1) = 	 (Q ) a l 	al 1 aC 	al 

(4.77) 

(4.78) 

Thermal energy 

at Qlph) + a l(pv1 h) - acl(kl 
Q 

a~l ) + Q1 t 

- 	ap 

vg aC1 

(4.79) 
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with the density being solely a function of piston displacement, 

zH,  i.e.. 

(pzH)I  
P = 	

zH  

Here, the subscript I denotes an initial condition. The solution 

gives the spatial variation of velocity and pressure as: 

dzH  

vi = E cTt 

(PzH)I 	d2zH 
P = Po(t) 	2 	E---7 t-  

where the pressure at the cylinder head, po(t), is given by: 

P0(t) = Po  I {ZZ ,I}Y 
' 	H  

and the temperature To(t) as: 

T,
3
(t) = 

 TI  
 zH, I  } 1

-1 

H 

(4.80) 

(4.81) 

(4.82) 

(4.83) 

(4.84) 

Here, 	(=z/zH) is a time-independent, dimensionless axial 

co-ordinate varying linearly between zero at the cylinder head to 

unity at the surface of the piston. 

To be representative of the type of grid used for calculations 

with piston bowls, a one-dimensional 'hybrid' grid, shown in 

Fig. 4.8(a), has been used for the accuracy assessment of the numerical 

method. This has the feature of a block of grids that translate 

without relative movement in the manner of a piston bowl, and, an 

expanding/contracting portion between the (imaginary) piston surface 

and the cylinder head. 
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The assessment considers first the variation of velocity 

error with grid spacing and time-step using the analytic solution 

for the axial pressure variation (equation 4.82) to evaluate the 

momentum equation pressure gradient. Both fully implicit (n = 1) 

and time-centred (n = 1/2) formulations are examined. The evaluation 

of the error, Ev,  has in each case been made at a point midway 

between the cylinder head and piston surface, interpolation being 

used where necessary and is defined as: 

Ev  - {  v
l 	vl'C } 

x 100 
H,max 

where v
1  and v1,C are respectively the numerical and analytic solutions 

for the absolute axial velocity and 
vH,max 

 is the maximum piston 

velocity. 

Figs. 4.9 to 4.12 show the velocity error for both 

differencing schemes for three different time-steps, equivalent to 

2°, 1°  and .50* crank-angle increments and three different grids of 

(N1  = 3,N2  = 3), (N1  = 6, N2  = 6) and (N1  = 12, N2  = 12) , where 

N1  and N2  are the number of grid lines in the cylinder and 'bowl' 

regions respectively (see fig.4.8a). The error is plotted against 

non-dimensional time. Considering first the fully-implicit scheme, 

the error reduces with time-step (fig. 4.9) and has a maximum value 

before TDC. The variation of error with grid size, shown in 

fig. 4.10, exhibits no obvious trend, the intermediate size of grid 

apparently gives the least errors, however, the coarsest grid does 

produce the highest error. 

*These time-steps have been chosen to minimise any oscillations 
associated with time-centred schemes. 
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Turning now to the time-step variation of error for the time-

centred scheme, shown in fig. 4.11, the results for the three 

time steps are virtually identical for the entire cycle, they are 

also one order of magnitude greater than those of the fully implicit 

formulation. The variation of error with grid spacing, fig. 4.12, 

does not show any definite trend. 

It would seem that the momentum equation is best satisfied 

using fully implicit differencing and that this scheme does possess 

the desirable feature of the error reducing with time step. 

Retaining the implicit momentum equation differencing, 

figs. 4.13 to 4.20 show the behaviour of the velocity and pressure 

error with grid spacing and time-step for both implicit (K = 1) 

and time-centred (K = 1/2) differencing of the continuity equation 

when both equations are solved. The pressure error, Ep, is evaluated 

at the same position as Ev  and defined in a similar fashion, i.e.: 

E ={
pp Pr 
	} x 100 
max  

where p and pC  are respectively the numerical and analytic pressure 

solutions and 
Amax 

 is the pressure at the time of maximum piston 

acceleration. 

Considering first the implicit scheme, the velocity error 

decreases with refinement in the time-step (fig. 4.13) whilst the 

pressure error (fig. 4.14) shows no discernable trend except for 

t* = 1 where the error increases with decreasing time-step. It should 

be noted that the level of velocity error is below that resulting 

from a solution of the momentum equation with the analytic pressure 

field. This, and similar results for the time-centred scheme 

suggests that the continuity equation enforces a correct (or nearly so) 
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velocity solution, the errors being 'swept' into the pressure field. 

Fig. 4.15 indicates that the velocity errors are independent of grid 

size. However, the pressure error (fig. 4.16) shows a reduction 

with grid spacing at all times of the cycle. 

The time-centred scheme shows a reduction of error with time 

step (fig. 4.17) and, as would be expected from the result of the 

stability analysis, also exhibits the characteristic oscillatory 

behaviour. The velocity errors here are two orders of magnitude 

lower than those of the implicit formulation. Again, the errors 

appear in the pressure solution, shown in fig. 4.18, these being 

of the same order as those of the implicit differencing and showing 

the same trend. There is no definite trend in the variation of 

velocity error with grid spacing (fig. 4.19) although the pressure 

errors (fig. 4.20) decrease considerably at all times in the cycle. 

The results of this analysis may be summarised as follows: 

Solution of momentum equation only 

(1) The implicit formulation produces errors one order of 

magnitude lower than those found with the time-

centred scheme. The errors decrease with time-

step for the former but are independent of time-step 

in the case of the latter. 

Solution of momentum (implicit differencing) and continuity equations  

(1) Velocity errors for the implicit and time-centred 

continuity differencing are respectively one and 

three orders of magnitude lower than those associated 

with the solution of the momentum equation in isolation 

and in both cases reduce with time-step refinement. 
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(2) Pressure errors for both schemes are of the same order 

and in both cases reduce with grid refinement. 

(3) Oscillatory behaviour, characteristic of the time-

centred scheme, is apparent in the velocity solutions. 

Application to a Two-Dimensional Turbulent Flow 

Results from the one-dimensional analysis indicate that, 

for the equations examined, a combination of time-centred continuity 

and implicit momentum equation differencing gives the best solution 

provided small time-steps are used to minimise the inherent oscillatory 

nature of this scheme. However, although the velocity errors of this 

scheme are two orders of magnitude lower than those found with the 

implicit continuity formulation, the errors associated with the latter 

are not large (less than 0.5% for the 2°  time-step (fig. 4.13)) and 

both schemes are therefore worthy of further investigation. Toward 

this end, results are presented below for a full two-dimensional, 

turbulent simulation of a piston bowl configuration, although the 

parametric testing is of necessity more limited due to the increased 

computer requirements. The results shown are for one cycle 

(BDC -4 TDC - BDC) with the simple piston bowl geometry illustrated 

in fig. 4.8b with initial conditions of zero velocities, including 

swirl, and spatially uniform fields of turbulence energy and dissipation 

values, typical of those generated during the intake process. The 

effects examined are: (a) time-step dependence of the time-centred 

continuity/implicit momentum* equation scheme, (b) grid dependence 

* 
Implicit differencing is used throughout for the turbulence and 
energy equations. 
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of the time-centred continuity/implicit momentum equation scheme 

and (c) a comparison of the time-centred continuity/implicit 

momentum and fully implicit schemes for the same grid and time step. 

The axial and radial velocity components and the turbulence energy 

are plotted for each case for a location in the centre of the piston 

bowl. 

Figs. 4.21 and 4.22 show the mean velocity and turbulence 

energy respectively using the time-centred continuity equation 

differencing for crank-angle increments of 1°  and 3°  and with a 

grid of (9 x 18)/(9 x 9)*. The velocities are similar except for 

the period immediately before and after TDC (t* = .5) at which time 

the effects of squish are strongly felt in the bowl, resulting in 

high temporal and spatial velocity gradients. The turbulence energy 

is increased for the small time increment and this is probably 

associated with the evaluation of the generation term in this equation 

which consists primarily of products of velocity gradients, and as 

already seen, these are reduced for the coarser time step. 

The effect of grid refinement on the mean and turbulent 

velocities, shown in figs. 4.23 and 4.24 for grids of (9 x 18)/(9 x 9), 

(14 x 28)/(14 x 14) and (19 x 38)/(19 x 19) for the 3°  crank-angle 

step, is similar to time-step refinement in that finer grid spacing 

enhances the maxima and minima, which is in turn reflected in increased 

turbulence levels. In essence, the coarser grid tends to smooth the 

steep spatial gradients, this effect being most pronounced around 

TDC. 

*The format (N1  x N3)/(N2  x N4) corresponds to: 

Nl  = no. of axial grid lines in the cylinder. 
N2  = 	" " 	" piston bowl. 
N3  = 11 IIradial 	cylinder. 
N4 = "  " 	" 	" 	" " 	" piston bowl. 
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Axial velocity predictions from the two differencing schemes 

are shown in fig. 4.25 for the (9 x 18)/(9 x 9) grid and using a 1°  

time increment. The radial velocity and turbulence energy are not 

shown as the two schemes produce indistinguishable results. 

The results of this investigation are summarised below: 

(1) Both grid and time-step refinement enhance the solution 

of the momentum and turbulence equations for the 

time-centred continuity differencing scheme. It is 

probable that this is also true for the implicit 

differencing of this equation (bearing in mind the 

similar performance found in the one-dimensional analysis), 

although this should be confirmed by further investigation. 

(2) Differences in the solution using the time-centred 

and implicit continuity equation differencing are 

minimal for the test case examined. 

The conclusion is therefore that unless small time-steps 

are a necessity (e.g. for a combustion calculation) the implicit 

scheme is preferred on grounds of stability. 

4.6 Differencing of the Source* Terms 

The differencing of the source terms for all equations, with 

the exception of the pressure gradient in the momentum equations, 

is dealt with here. Many of these terms are similar in form, in 

which case only a representative example will be given. Some of the 

*The term is used here loosely to include all constituent parts 
of Scp in the general transport equation (4.17). 
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terms however are unique to the present problem and make significant 

contributions to their respective conservation equations. For 

example, the interaction of the v3 (swirl) velocity with the vl 

and v2 fields can be of major importance, affecting both the flow 

structure and the stability of the method for even moderate swirl 

rates and the pressure-work term in the energy equation is also 

extremely important in the calculation of the temperature, .thus these 

terms are dealt with separately. 

Before examining individual terms, the difference between 

the 'strong' and 'weak' conservation forms of the 

differential equations will be discussed. The one-dimensional continuity 

and general transport equation in strong conservation form for an 

Eulerian co-ordinate system are: 

ap+ a pv) = 0 
Tf 	az 

at 	az + āz(pvq) - āz(r 	) - s~ = 0 

(4.85) 

(4.86) 

The time-dependent and convective terms of the full differential 

equations presented in chapter 3 are of this type and the subsequent 

differencing ensures that, when 0 is a scalar, conservation prevails 

ān a local and hence overall basis. If alternatively the general 

transport equation is rewritten as: 

{ā t + āz(pv)} + n  + pv az - az'' 3z) - sO = 0 	(4.87) 

then the bracketed term is zero (from continuity) giving the 

weak conservation form: 
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P 	+ pv 	- 2(r 2t) - s =  0 	 (4.88) 

Unless especial care is taken in the differencing of this equation 

the numerical scheme will be non-conservative. 

The curvature terms in the curvilinear orthogonal momentum 
pv•v• 

equation, of the general form 	r~ g , which serve to redistribute  
k 

momentum between the three co-ordinate directions, should ideally 

be conservatively differenced. 	This is not easy to arrange because a 

curvature term in one equation does not have a direct counterpart 

in another. A method proposed by Vinokur (1974) is superior to the 

scheme presented here in that it takes account of the finite size 

of the cell and results in conservative differencing. This method 

has been extended by Watford (1978) to include viscosity terms. This 

scheme is not used here as a not inconsiderable amount of further 

work would be needed before a viable computer code could be produced, 

but it is worthy of further investigation. 

The main curvature terms are of two types, namely centrifugal 

and Coriolis, of the general forms pvi/rk and pvivj/rk (i # j) 

respectively. The former enter the calculation in an explicit fashion 

and for high values of vi and/or low radii of curvature can be 

important contributors to the local momentum balance, reducing the 

dependence on surrounding cells and sometimes causing numerical 

instability. A linearisation method used by Gosman et al (1975), 

provides a means of suppressing this effect. For ease of explanation, 

if cos a is taken to be unity, then the term involving the swirl 

pv?, 
velocity (v3) in the radial momentum equation (3.19) is 	. The 

3 
suggested linearised implicit form of this term is: 
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2 

pv3 (1 + f 
(vi _ vi+l

))  r3 	v3  2' 2 (4.89) 

where f is an under-relaxation factor and superscript i refers to 

the ith iteration. The additional contribution, which is zero for a 

converged solution (v2  = v2+1), attempts to anticipate the effect 

of perturbations of the v2  velocity on the convection of v3  momentum 

in the radial direction as the solution proceeds. A value of f = .3 

has been found to give good results. 

For the direction-1 momentum equation, the terms to be 

approximated are: 

pv2 si nspv3 	pv2v1 
r2 	r3 	rl  

The constituent parts'of these terms are calculated according to the 

following specification: 

P = flpw  + (1-fl)Pp 	 (4.90) 

v2 	= fl(v2,wnw2v2,wsw)  + (1-f1) 
(v2,n 

 2v2,$) 	(4.91) 

where f1  is defined in equation 4.9. 

v3  = flv
3,w 

 + (1-fl)v3,p  

r2 = fl (r2,wnw 2 r2,wsw) + (1-fl) (r2,n2r2,$)  

r3  = fl  r3,14  + (l -fl) r3,p 

The curvature terms in the direction 2 and 3 momentum equations 

are differenced in similar fashion. 

(4.92) 

(4.93) 

(4.94) 



1 4 _ 
Li a?l 	(t15?1)e/w 

I 
oe ~w (4.98) 
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The remaining source terms for all the differential equations, 

with the exception of the pressure work term in the energy equation, 

are of 3 general types, i.e.: 

I (4.95) 

II 1 	a (1) 	or 1 	a (1 arm) 
Q1 aC1 21 

BC.]
Q2 a

e
2 Q2 a1 2 

(4.96) 

III 
1 a 1 ap 
A,1 ac1 ( Q2 ac2) or 1 	a 

( 
1 4 

'2 a62'1 a61) 
(4.97) 

The above terms are differenced in the fashion indicated below. Only 

the first of each example is given as differencing of the other 

follows similar rules. 

where 

Ow = 	(1-f1)0P (4.99) 

with a similar expression for oe and fl is defined by equation 4.9. 

la 1 4 1 	(1)E- P 	OP-Ow  
II 	Qlacl(Q1 ail) 	(Qis~l)e/w 	

(Qls?l)E
/P 	(Qla?l)P/w} 

(4.100) 

13 1 ao _  1 	une-4)se 	~nw-4'sw  
III 	

QlaC1(22 3C2) 	(9'1 6 1 )e/w { (R'2d"2)ne/se 	(Q26 2)nw/sw } 

(4.101) 
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Here, tne' ase' thnw 
and 

 thsw  are obtained from a weighted average 

of the 4 surrounding values, typically 

q)sw = fl {  4)SWf2 + 4)W(1-f2) } +(l-f1 ){ sSf2  + (1)13(1-f2) } 	(4.102) 

Formulation of the Pressure-Work Term  

This source term is dominant in the energy equation for a 

gas undergoing compression and its correct formulation is fundamental 

to the accurate calculation of gas temperature and heat transfer. 

The following relationship that connects the pressure and temperature 

changes to piston displacement, i.e.: 

Y-1 	Y- 1 Tn - ( o) Y  r (

Vn) 
T 	p 	V 

(4.103) 

for circumstances of isentropic flow , may be used as a basis 

for the assessment of alternative differencing schemes. The one-

dimensional form of the energy equation 4.79 , with the exact solution 

for density, velocity and pressure inserted is used to test the 

numerical solution. The solution of this differential equation should 

have the following properties when solved with an initial condition 

of a uniform temperature field and adiabatic boundary conditions 

for the process of compression and expansion (BDC -} TDC -> BDC): 

1. Reversibility (The temperature fields at the start of 

compression and the end of expansion should be 

identical). 
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2. Accuracy (the temperatures should be spatially 

uniform and near to those given by eqn. (4.103) 

throughout the cycle). 

Before a proposal is made for a scheme that satisfies the above 

criteria, the shortcomings of expressing the terms on the RHS of 

equation 4.79 as simple central differences and the alternative 

scheme used by Watkins (1977) will be examined when used for a 'hybrid'- 

type grid as defined earlier in section 4.5. 

When expressed in central finite-difference form, equation 

4.79 is: 

āt {(01-1)17)  - (ptiT)p } + Cp {(pvl)eTĒ - ( pvl)wTW} 

n (P)n-(0°  

Q1,p{ 	ot 	Pl-  vg(pe-pw) 
(4.104) 

Substituting the exact solutions for vl  (and vl), p and p from 

equations 4.81, 4.82 and 4.80 into 4.104 the result for the hybrid 

grid (N1  = 2, N2  = 3 and (St equivalent to 10°  crank-angle) is shown 

in fig. 4.26. This scheme fails miserably, being irreversible 

and totally inaccurate with large spatial temperature gradients 

and will be discarded henceforth. 

Turning now to the scheme used by Watkins for a simple 

expanding/contracting grid (i.e., without a piston bowl), when 

expressed in finite-differences for the hybrid grid it is: 
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St {(01 T)p - (pL1 T)p} + Cp {(pvl)eTĒ - (pvl)wTw } 

= ōt {(Qlp)P - (Q1p)P } - {[vg(pn:po)] 	[v g(pn2po )]w} 

(4.105) 

The condition of reversibility and accuracy can be examined by summing 

equation 4.105 over all control volumesin the field to give: 

St {(pzHT)n - (pzHT)° } 

= t{(zHp)n - (zHp)° - (zH - 	zH) 	( pn2po) 1 (4.106) 

Noting that continuity requires (pzH)n = (pZH)° and p = pRT, the ratio 

of temperatures on successive time steps can be written as: 

zn 

(4.107) 

Reversibility may be tested for by examining a situation where 

zH } zH -' zH 	in which case it is required that To ; Tn -' T°. This 

condition may be expressed as: 

n 	o 

T° . 
Tn = f(zH, zH). 	f(4, zH) = 1 

By interchanging Tn, T° and zH, zH i n equation 4.107 to give: 

(4.108) 

Zu 

T° 	1 	(~LY ) (1 + H} 	o 	n z 

T" = 	n 	= f(zH, zH) 	(4.109) 
T 	1 (-) (1 + zH 

zH 

Tn 	1 	( 	2Y ) (1 	
-~ 

T° 	-1 	
f(4, zH) 

1 ( 	) (1 + ?n ) 
zH 
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it can easily be verified that the reversibility condition is 

satisfied. 

The accuracy of the scheme can be examined by expressing 

the analytic solution and finite-difference approximation as power 

series and comparing coefficients. Replacing zH/zH by (1-b) where 

b = (zH-zH)/zd  and Ibi « 1, the power series expansion of the 

analytic expression (4.84) is: 

n-1 
o 	bn(-1  )n  Z (y-1-m) 

Tn = ( zH )y-1 = 1 + Ē 	m=0  

T°  44 n=1 	
n 

(4.110) 

The Watkins formulation (4.106) arranged as a power series is: 

T = 1 + f bn  {1-y E 	(12  )m-1 } 
T
o 	n  

m=1 

Assuming a value 	y=1.4, the first 3 coefficients of equations 4.110 

and 4.111 are compared in table 4.1. The coefficients are identical up 

to b`, thereafter differing, but with the value of b substantially less 

than unity and proportional to time step, the error is small in practice. 

Using the exact solutions for Vi, p and p the temperature solution 

for the Watkins scheme (4.105) when used with the hybrid gird is shown 

in fig. 4.27. The results are much better than those of equation (4.104) 

but there are spatial temperature gradients, the temperature being 

less than the analytic solution near the cylinder head and greater, 

by about 40°K, at the piston, thus this scheme has also been rejected 

for the present application. 

A scheme that does satisfy all of the foregoing criteria 

has been discovered by trial and error. It is possible in this 

instance to demonstrate that the scheme is reversible and produces 

small temperature errors, but the assessment of spatial uniformity 
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must again rely on a numerical test. The proposed formulation is: 

C 
{(pt1 T)p  - (pi1T )p} + Cp  { (pvl)eTĒ - (pvl)wTW } 

n 	o 

_ { Pp -  Pp}  Qo 	p 1 /2  
St 	l,p (Pn)  (4.112) 

The condition of reversibility and accuracy can be examined, as 

in the case of the Watkins scheme, by summing equation (4.112) over 

all control volumes in the field to give: 

C, 	 n

āt {(pzHT)n  - ( pzHT)o} _ {P  - p°} 	
1/2  

p 

(4.113) 

Replacing p by pRT gives: 

zn  

n 
1 	

(y-1)(`H 
T 	

z—H— 

 

(4.114) 
T0 	1 	(Y -1

1"
,`H )1/ 2 

Y zn 

 

Interchanging zH, zH and T°, Tn  it may be shown that the reversibility 

criterion(4.108) is satisfied. Replacing zH/zH by (1-b) equation (4.114) 

may be expressed as a power series (see appendix 3). 	This is: 

Tn 	2 
To  = 1 	a 7 + E (-arm)  n bn { 1  - () b  } 

	

1-a n=1 1-a 	1-a 

(__L2)   Ē bn 
	{ Ē 

( 1 )(3) " (2.  +m - 1) ( _a2 )n-m} 	
(4.115) 

1  n=1 m=1 	m' 	l ā 

where: 

a - (4.116) 
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A comparison between the coefficients for this series in table 4.1 

shows that this scheme is identical with the Watkins and analytic 

solutions up to b2  and closer to the latter in b3. The improvement 

over the Watkins scheme in overall accuracy is marginal but of more 

importance, there are no spatial temperature gradients, as shown by 

a numerical test with the same hybrid grid and time step as before. 

The maximum temperature error during the compression and expansion 

cycle was found to be .117%. 

The same performance has been found for a two-dimensional 

test case with adiabatic boundary conditions and this scheme is 

therefore employed here. 

4.7 The Dynamic Control of Stability and Convergence  

It became apparent during the initial calculations of the 

flow in piston bowl geometries that stability of the numerical 

method could not be guaranteed near TDC of compression, which is 

a period of intense flow activity. In such cases, the residuals 

(equation 4.55) of the equations would either increase monotonically 

(diverge) or simply "wander" about some mean level with no obvious 

trend. Apart from the overall pressure adjustment scheme and the 

modifications for controlling the effect of the swirl source terms 

already described, the only means left to control stability and con-

vergence,is to use under-relaxation in the solution procedure. Under-

relaxation is introduced into the iterative solution of the general 

difference equation 4.17 as follows: 
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APAP = c A° {f4 	' 1 + (l f)'c,~-1 } + E A°4° + S~ (4.117) 

where the superscript i denotes the i'th iteration and f is an under-

relaxation factor defined in the range 0 <f < 1. After rearrangement, 

new coefficients for Ap, A° and S
(I) 

are given by: 

An 	A° 

Ap 	Ac} 
	

(4.118) 

and S
a) 

1-f E An n,i-1 
( f ) c coc 

It is common practice to specify different values of f for 

the various variables but to retain these same values for the duration 

of the calculations. This was found to be inadequate in the present 

circumstances as demonstrated later, so a new scheme was therefore 

devised with two objectives: firstly, to ensure that the iteration 

scheme remains stable at all times, and secondly, to maximise the 

convergence rate. These two requirements are usually conflicting 

and as it was considered that a slowly converging solution was better 

than one that diverged, the emphasis has been on stability. The 

optimum values for the under-relaxation factors differ according to 

the flow conditions. For example, it was found during single cycle 

calculations, where the piston was implusively started at BDC, 

compressing the gas until TDC, followed by expansion to BDC, that 

for the initial stages of the compression stroke and the latter part 

of the expansion stroke when the rates-of-change of the various flow 

properties is relatively low, high values of f (typically .5 to .7) 

could be used, resulting in high convergence rates. Conversely, near 

TDC, steep gradients and high rates-of-change (especially when swirl 

is present) requires low values of f(.1 to .3) to even maintain 

stability. These differing requirements cannot be met by fixed 
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values of under-relaxation factor, the penalties being either numerical 

instability or slow convergence depending upon the values chosen. 

It was observed that high convergence rates could often 

be obtained with the under-relaxation factors set at a level at the 

limit of numerical stability. It was also found that once a solution 

had started to diverge, as signaled by an increase in the residuals 

of one or more of the equations, that convergence could be re-established 

by immediately reducing the under-relaxation factors. The most sensitive 

equations in this respect are those for the vl and v2 velocities and 

the pressure field. The scheme described below for automatic adjustment 

of the under-relaxation factors incorporates these observations. 

Designating residuals on successive iterations as R -2, 

R(
-1 

and Rg5 where the subscript cp may stand for vl or v2 and introducing 

under-relaxation factor adjustment parameters 	and 
S2 

and 
S3 

with 

magnitudes slightly greater than unity, slightly less than unity and 

substantially less than unity respectively, the criteria employed 

for adjusting the f's are as follows: 

1. Convergence - slight increase required to under-relaxation factors  

(a) If RV
-2 > RV-1 > Ri 	f

v 	11fv 1 	1 	1 	1 	1 

(b) If Ri-2 > RV-1 > Ri 	fv }131fv v2 
	2 	2 	2 	2 

(4.119) 

(c) If (a) or (b) • 
•

fp 1 -*Slfp 1 

2. Stability limit - slight decrease required to under-relaxation factors  

Ri-2 
	i 	i 	i-2 	i-1 	i 

(a) If Rv > Rv < Ri or Ri-2 < Ri-1 > Ri : 
f 1,11 
 

S2f v 1 	v1 	v1 	v1 	v1 
	1 	1 

(4.120) 

i-2 	i-1 	i 	i-2 	i-1 
(b) If Rv > Rv < Rv 	or Ri-2  < Ri-1 > 	Ri : f -~ 132

fu 2 	2 	2 	2 	2 	2 	2 	2 
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3. Divergence - substantial decrease required to under-relaxation factors  

(a) If Ri-2 < 
Rv-1 < 

Rv 	fv ;13fv vl 
	1 	1 	v

1 	1 

(b) If 	Ri-2 < 
Ri-1 < Ri 	fv -~ 133fv 2 	2 	2 	 2 	2 

(4.121) 

(c) If 	(a) AND (b) fp ~ -Y $3fp 

The values assigned to the various control parameters are: 

51 = 1.03, 	132 = .95, 	53 =.5 

fain (minimum allowable value) = .1 

fmax 
(maximum II " ) = .7 (except for p' where 

fmax = 1.) 

fref 
(starting value) = .5 

The performance of the scheme may be assessed by reference 

to figs. 4.28 to 4.30 which show the variations of both the vl and v2 

residuals and, 	and and f
v2 

at different stages during the computation 

of an engine cycle. This particular engine had a simple piston bowl 

(fig. 4.8b) and engine speed, compression ratio and initial BDC swirl 

ratio of 1400 rev/min, 14:1 and 7.3 respectively. 

Near BDC, shown in fig. 4.28, convergence is rapid for both 

the v1 and v2 equations, so the scheme causes the under-relaxation 

factors to be increased and by 18 iterations the normalised residuals 

are of the order 10-4. At approximately the mid-stroke position, 

fig. 4.29, differing performance of the residuals for the two variables 

is observed: thus,divergence of the vl equation commences at 7 

iterations which causes the scheme to immediately reduce the value of fvl 

to 
fmin. Convergence is re-established by 12 iterations and apart 
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from a slight "hiccup" at 20 iterations, the calculation is there-

after otherwise convergent. A much more complex situation is shown 

in fig. 4.30, which is at 2°  BTDC and where physically, angular momentum 

is being convected into the piston bowl by the action of squish. The 

strong inter-relationship between the swirl velocity and the radial 

(v2) momentum equation is a threat to stability, a fact mirrored by 

the performance of the latter equation. The f's, which start in this 

case at the value remaining from 'the previous time-step (if these 

values are less than the reference value, they are taken in preference) 

are increased initially, but at 30 iterations the residuals of the 

v2  equation start to increase, bringing an immediate reaction from 

the scheme such that fv2  is reduced to 
min  (note the effect of the 

v2  divergence on the vl residuals). The reduction in fv2  restores 

convergence until at 48 iterations the residuals of both equations 

increase simultaneously, probably exacerbated by the now high value 

of fvl. All under-relaxation factors are here reduced (although not 

shown, fps is also reduced to fmin)  and convergence is eventually 

restored by 70 iterations, although at a slower rate than previously 

(indicated by the slope). 

The improvement that the scheme offers over more conventional 

fixed under-relaxation factors is adequately described by fig. 4.31 

which shows the variation of the number of iterations at each time-

step to achieve a converged solution on the one hand with fixed values 

of fv1  = fv2  = .3 and fv1  = fv2  = .5 and on the other with the dynamic 

adjustment scheme described. The same convergence criteria have been 

used in each case. With fvl  = fv2  = .3, convergence is achieved through-

out the cycle but the number of iterations to convergence at each time-

step is consistently above the number for the dynamic adjustment scheme. 

With fv1  = fv2  = .5, the results are virtually identical with the 

dynamic adjustment scheme except for the period ±10°  of TDC. Within 
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the period 7°  BTDC to TDC convergence of the solution with fixed 

under-relaxation factors could not be achieved within 200 iterations, 

and although not divergent, the solution showed no tendency to converge 

either. This test has been made with less stringent conditions than 

that used for the results of figs. 4.28 to 4.30 in that swirl was 

absent. If the previously described problem had been attempted with 

fixed under-relaxation factors, it is probable that divergence leading 

to numerical failure would have resulted. 

4.8 Closure  

In this chapter, the differential equationsof chapter 3 have 

been approximated with finite-difference expressions and the solution 

method has been described. 

The method of incorporating the boundary conditions into 

the solution procedure for both no-slip walls and inlet/exhaust apertures 

has been detailed. Variants of the basic grid to accommodate both 

moving and fixed valves have been presented. 

Alternatives for both spatial and temporal differencing 

have been discussed with particular emphasis on the latter and 

different schemes have been examined within the framework of both 

one and two-dimensional problems. The accuracy and stability 

properties of each scheme have been quantified and recommendations 

have been made based upon the results of this work. 

The differencing of certain source terms peculiar to the 

in-cylinder flow problem and the curvilinear orthogonal grid has been 

dealt with and appropriate recommendations have been made. 
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Finally, a novel scheme for controlling the convergence 

and stability of the numerical procedure has been described. This 

scheme,which adjusts the under-relaxation factors in a fashion 

determined by the immediate history of the solution, has been demonstrated 

to be superior to the more traditional fixed under-relaxation factor 

methods. 
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CHAPTER 5  

VALIDATION OF THE PREDICTION METHOD  

5.1 Introduction  

In the previous chapter differencing schemes were devised 

which accorded reasonably well with analytical solutions for velocity, 

pressure and temperature for one-dimensional isentropic compression- 

expansion. 

In the absence of further analytical solutions, validation of 

other features of the model must rely on comparison with experiment. 

This latter course is not without difficulty for a number of reasons: 

firstly, a vast amount of detailed information may be derived from 

the model but this is reflected in a requirement for an equally 

detailed specification of both initial and boundary conditions in 

the experiments; secondly, a validation test should ideally examine 

. just one aspect of the model if there are not to be subsequent 

difficulties in pinpointing the source of any disparity between theory 

and experiment; thirdly, in spite of careful experimentation, there 

are always uncertainties in the experiments themselves, exemplified 

by the HWA calibration difficulties of Witze (1976c, 1979), described 

in chapter 2, and finally, evaluation of the actual modelling (as 

distinct from numerical approximation) is difficult if not impossible, 

as the results of sector 4.5 indicate that grid and time-step independent 

solutions are difficult to obtain using economical specifications 

of these parameters. The outlook for validation is not quite as bleak 

as suggested by these observations, but an appreciation of the afore- 

mentioned limitations is necessary in drawing realistic conclusions 

from the comparisons presented. 
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The measurements in axisymmetric engines of various kinds 

described in section 2.4 are used as a basis for evaluating the present 

method as described in subsequent sections. A detailed comparison of 

axial velocity, turbulence intensity and where appropriate, swirl 

velocity profiles for the non-compressing glass-cylinder engine of 

Morse et al (1978) is presented in section 5.2. Three cases are 

considered and these include the effects of the introduction of a 

piston bowl and swirl. In section 5.3, comparisons are made with the 

single-point HWA measurements of Witze (1976c, 1979) in a compressing 

engine with both flat and bowl-in-head configurations. Predictions of 

instantaneous heat flux at 4 radial positions on the cylinder head 

are compared with measurements of Dao et al (1973) in section 5.4. 

It will be recalled from chapter 2 that the engine in which these 

measurements were performed is not truly axisymmetric, having a single 

off-set valve used for both inlet and exhaust. However, the axisymmetric 

piston-bowl and quality of the experiments warrants inclusion in this 

chapter. Finally, in section 5.5, the simple theories of squish and 

swirl for bowl-in-piston chamber configurations due to Fitzgeorge and 

Allison (1963) are compared with calculations using the present 

method for an engine with a cylindrical piston bowl. The computer 

run times, computational time step and total number of grid cells 

used for each test case are given in table 5.1. 
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5.2 Cases (1) to (3) - Comparison with the Measurements of  

Morse et al  

This section presents three sets of detailed comparisons 

with experiment for the non-compressing, axisymmetric, glass-cylinder 

engine fitted with a fixed, central valve, positioned flush with the 

cylinder-head such that the air enters and leaves via an annulus 

angled at 60°  to the latter. The arrangement is shown in fig. 2.18 

and is described in section 2.4. The test cases cover the following 

configurations and conditions: 

case 1 - Flat top piston without swirl (Morse et al, 1978) 

case 2 - II 11 
with " ( " 

case 3 - Cylindrical cavity piston without swirl (Yianneskis,1977) 

Details of the computations are given below. 

Specification of Inlet Conditions  

The mass flow rate is calculated according to the method 

described in section 4.4, although a subsequent analysis of the 

results has shown that at the engine speed of 200 rev/min the 

pressure drop across the valve orifice is negligibly small, and a 

specification based on the instantaneous piston displacement 

and the assumption of incompressible flow would probably be quite 

adequate, the differences between these alternative methods being 

at most about 3%. The equation (4.60) for the mass flow rate requires 

a value of discharge coefficient ; in the absence of a pressure 

drop-flow relationship for this port a typical value of .6 was 

assigned. 
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The greatest uncertainty lies in the specification of 

the axial and radial velocity components at the orifice plane. 

Examination of the experimental streamlines (figs. 2.19 and 2.20 

for the no-swirl and swirl cases repectively) shows that early 

in the intake process at 36°  the flow leaving the orifice has a 

higher axial component than suggested by the inclination of the 

orifice passage whilst at 144°  the angle of the streamlines close 

to the valve indicates a higher radial component. The reason for 

this is probably that the short length of the annular passage (7 mm) 

is insufficient to cause the flow to align with its walls and 

the exit angle is therefore partly determined by the steep angle of 

the external valve surface. It is also apparent from figs. 2.19 and 

2.20 that the inclination of the streamlines is strongly affected by 

the primary recirculation in the cylinder. It was not thought justified 

to include these effects into the predictions and the results presented 

here are based on a constant inlet angle of 60°. A further uncertainty 

is the shape of the inlet velocity profile. In the calculations 

presented here, uniform profiles have been assumed for both axial and 

radial components, however recently available measurements of the 

former at a distance of 0.5 mm from the cylinder head (fig. 5.20) 

show this is not the case; more will be said of the effects of this 

disparity later. 

It was observed in the measurements that, during intake, 

the turbulence downstream of the inlet annulus is considerably 

higher than that at the orifice itself, thus indicating that much 

of the turbulence is generated in the shear layers of the jet inside 

the cylinder; the inlet boundary conditions for turbulence energy 

and dissipation rate were therefore assigned small values of 

10-5  m2/s2  and 10-5  m2/s3  respectively. 
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Other Computational Details  

The large orifice area and slow rotational speed of the 

engine ensure nearly isothermal and isobaric operation and it is 

therefore not strictly necessary to solve the energy equation. For 

completeness, this equation was included, with the gas temperature 

at the valve and surface temperature (all surfaces) prescribed as 

313°K and 325°K respectively. The ambient gas pressure was specified 

as 105  N/m2. In the cylinder, the initial gas temperature and pressure 

were assumed uniform and equal to the values at the valve. 

The grids for the flat top and cylindrical bowl pistons 

have already been described in section 4.4 and are shown in fig. 4.3. 

For cases (1) and (3), the differential equation for the swirl was 

not solved. 

Cyclic Dependence  

The behaviour of the flow after "start-up" is governed by 

both the initial and boundary conditions. If the former differ greatly 

from the conditions that would otherwise prevail under cyclic operation 

and the effect of the boundary conditions on the flow is small, then the 

start-up transient will be longer than if the situation were reversed. 

These calculations were started at TDC and predictions 

at this crank-angle position on subsequent cycles indicate that 

the velocities are small, so the assumption of zero initial velocities 

is reasonable. Subsequently, the flow structure is strongly governed 

by the intake jet and it would therefore be expected that cyclic 

operation would be reached quickly. 
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Fig. 5.1 shows, for case 1 at a position just downstream of 

the valve, the variation over 2i cycles of the axial and radial 

velocity components, normalised by the mean piston speed. There 

are no perceptible differences between the maxima produced during 

induction on the 3 successive cycles shown and less than 1% difference 

between the minimum values of the radial velocity on cycles 1 

and 2: hence it may be concluded that for calculations without 

swirl (cases 1 and 3), the second cycle adequately represents cyclic . 

operation. 

When the flow is swirling however, the rotation persists 

throughout the cycle with not insignificant levels of residual 

angular momentum carrying over to the start of intake on the next 

cycle. Thus, the effects of the initial conditions, which here include 

the specification of no swirl, persist for longer until the latter 

builds up to the appropriate level. 

Fig. 5.2 shows 3 cycles of the variation of the normalised 

axial, radial and swirl velocities for the swirling flow of case 2. 

at the same position as before. The initial cycle-to-cycle differences 

in the maxima during intake in both axial and radial velocities 

are about 3%, the radial velocity minima during exhaust vary by 

13% and an increase of about 15% in swirl velocity is observed 

between cycles 1 and 2. The progressive increase in swirl speed 

is illustrated more dramatically in fig. 5.3, which shows the 

variation of the same quantities at a position near the piston, 

For the swirling flow calculations, it would seem that 

three cycles should be computed before it can be reasonably 

assumed that the solution is no longer dependent on the initial 

conditions. 
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Case 1 - Flat Top Piston Without Swirl  

Fig. 5.4 shows the predicted velocity field in the form of 

velocity vectors* at 36°, 90°, 144°  and 2700; the corresponding 

experimental streamlines are shown in fig. 2.19. 

At 36°, the overall flow structure is reasonably well 

predicted. Specifically, areas of agreement are: the existence and 

correct sense of rotation of recirculation zones centred at (a) 

and (b); the position of the centre of (b) and the location of the 

stagnation point (zero streamline in fig. 2.19) on the axis. Features 

not predicted so well are the position of the centre of vortex (a) 

and its axial extent, the discrepancies in the calculations apparently 

being caused by higher radial velocities immediately downstream of 

the inlet. 

The experimental and predicted flow fields at the mid-stroke 

position (90°) show slightly better agreement in that the length 

of vortex (a) is now about the same. The eddy centred at (b) is 

also well-predicted although at (c) the small recirculation zone 

observed in the measurements has not appeared in the predictions. 

Agreement is better at 144°  at (c) although the measurements 

indicate a larger recirculation zone (examination of the numerical 

values of the predictions shows only small negative axial velocities 

adjacent to the wall at (c)). Other features of the flow, which 

include the vortices at (a) and (b) and the inclination of the vectors 

*The velocities are plotted in the form of arrows indicating 
the direction, determined from the resultant of the axial and 
radial components, whilst their length is scaled linearly with 
the magnitude. The same scaling is used at each crank-angle and 
a reference vector is included to indicate the scaling factor. 
This format is retained throughout the remainder of this thesis. 

In addition, regions of special interest in the flow field have 
been labelled (a), (b), (c) etc. in the figures for ease of 
reference in the text. 
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and streamlines throughout the field are generally in good 

agreement. 

At the mid-stroke position during exhaust (2700), with the 

exception of a weak predicted residual eddy at (a) which is not 

seen in the measurements, the sink-like appearance of the flow 

compares well. 

Figs. 5.5 to 5.8 show comparisons for the same case between 

the axial mean (71 ) and turbulent (v~* = v 1/2) velocity profiles, 

normalised by the mean piston speed, at a number of axial positions 

and the same crank-angles as previously. At 36° (fig. 5.5) the axial 

velocity at z = 10 mm is in reasonable agreement with the measurements 

with co-incident radial positions of the peak at r = 24 mm although 

the value is under-predicted by about 25%. The peak negative value 

is 40% higher than that measured at r = 15 mm but is in better agreement 

nearer the axis. The peak turbulence intensity is 30% lower than 

the measurements and the predicted profile is much flatter. 

At z = 20 mm, the predicted axial velocity shows a relatively 

flat profile for r > 22 mm and the negative velocities close to 

the wall (r > 30 mm) evidenced in the measurements are not predicted 

at all (hence the under-prediction of the length of the recirculation 

zone (a) in fig. 5.4.) The difference between the measured and 

predicted profiles suggests that the former retains a jet-like 

structure for a greater distance than the latter. The turbulence 

shows the calculated values to be about 50% of the measured ones 

at r = 23 mm although for r < 15 mm both mean and turbulent velocities 

are in better agreement. At z = 30 mm, the comparison is considerably 

better than nearer the cylinder head, probably because the flow 

close to the piston is influenced more by the piston motion than the 

inlet jet. 



- 167 - 

At 90°  (fig. 5.6), the peak inlet velocity at z = 10 mm is 

again under-predicted, in this instance by about 30%. Towards the 

axis (r <15 mm) agreement is good but at the outer radii (r >33 mm) 

the measured negative axial velocities are not predicted at all. 

The turbulent velocity shows a flatter profile than the measurements, 

the latter reflecting the jet-like structure and steeper gradients of 

the mean velocity. At z = 20 mm the positions of the mean velocity 

peaks in both measurements and predictions have shifted radially 

outward by about 4 mm and the level of agreement is about the same 

as at z = 10 mm. The measured peak turbulence level close to the wall 

is not predicted at all and the differences are substantial for 

r >17 mm. In view of the discrepancies at z = 10 mm and z = 20 mm 

the mean velocity agreement at z = 30 mm is surprisingly good, the 

peak values differing by about 15% with a similar level of agreement 

for r < 23 mm. The turbulence levels are again poorly predicted 

however, being only about 30% of the measured values. Bearing in 

mind the poor upstream correlation, this is not unexpected. The 

position of the peak mean velocity at z = 40 mm shows the predictions 

to have a higher axial component nearer the wall. This is again 

evidenced at z = 50 mm where a negative axial velocity is observed 

in the measurements, signalling the existence of the recirculation 

zone at (c) in fig. 5.4 that does not appear in the predictions until later 

in the cycle. 

At 144°  (fig. 5.7) the z = 10 mm mean velocity profile shows 

the predicted position of the peak to be much nearer the wall than 

in the measurements and the negative axial velocities adjacent to 

the wall in the latter are not apparent although towards the axis 

(r <15 mm) agreement is better. The turbulence velocity peak at 

r = 24 mm is under-predicted by 50% but for r <20 mm, agreement is 
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better. The mean velocity profiles at z = 20 mm agree well: the 

peak is within 5% and for r <20 mm, differences of the order 15% 

are observed. The two small turbulence peaks between r = 20 mm and 

the wall are not apparent in the predictions although agreement is 

virtually exact for r <20 mm. The z = 30 mm mean velocity profile does 

not correspond to that measured and although the position of zero 

axial velocity at r = 22 mm is co-incident, the errors in the positive 

'and negative values either side are between 20% and 50%. The turbulence 

maxima for r > 20 mm are not predicted although at the inner radii 

agreement is better. At z = 40 mm errors in the peak mean velocity at 

r = 30 mm and at the axis are about 25%. The measured turbulence 

shows high values adjacent to the wall which are not apparent in the 

calculated profiles past z = 40 mm. At z = 50 mm, although there are 

differences in mean velocity at r = 18 mm, the peak at r = 28 mm and 

the centreline value agree well. The negative velocity adjacent to 

the wall at z = 60 mm and z = 70 mm is under-predicted, thus, the 

strength of the predicted recirculation at (c) in fig. 5.4 is weaker 

than that measured. 

At the mid-stroke position (270°) during exhaust (fig. 5.8) 

errors in the mean velocity peak of the z = 10 mm profile are about 25%, 

increasing to 50% at the axis. The flow is virtually one-dimensional 

and the level of agreement for both mean and turbulent velocities 

improves progressively nearer the piston. 
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Case 2 - Flat Top Piston With Swirl  

This case differs from that previously described in that a 

differential equation for the swirl velocity is solved in addition to 

those for the remaining variables. The swirl boundary condition at 

the annulus was obtained by spatially discretising the profiles shown 

in fig. 5.14 measured at a distance of 0.5 mm from the cylinder 

head at 36°, 90°  and 144°  crank-angles, to obtain values at the 

grid lines, and linearly interpolating in time. The swirl velocity 

at the valve was assumed to be zero at TDC, BDC and throughout the 

exhaust stroke. In this context, it should be noted that as the 

high velocities through the valve during exhaust invoke the upwind 

feature of the differencing scheme, the boundary conditions at the 

valve are effectively de-coupled from the solution in the cylinder. 

Fig. 5.9 shows the predicted flow structure for comparison 

with the experimental streamlines of fig. 2.20. At 36°, the eddies 

at (a) and (b) are similar to the predictions without swirl although 

there are differences near the piston at the region (d) where the 

large vortex centred at (b) is distorted by swirl. The axial 

length of recirculation zone (a) is in better agreement than the 

no-swirl case, although at (e), the weak vortex observed in the 

measurements is not apparent. At 90°, the distortion of vortex 

(b) near the piston at (d) is well predicted although the weak 

but large measured eddy at (e) is hardly discernable in the calculations. 

At 144°, the structure• is similar although "stretched" and agreement 

is good apart from region (e). It is interesting that the absence  

of the weak recirculation observed at (c) in the no-swirl case is 

correctly predicted. The flow at 270°  is virtually one-dimensional 

except close to the valve and piston for both calculations and 

measurements. 
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A detailed comparison between the measured and predicted axial 

velocity and turbulence intensity profiles is presented in figs. 5.10 

to 5.13. At 36°  (fig. 5.10), the general level of agreement is similar 

to the previous case. The velocity peak at z = 10 mm is under- 

estimated by 15% and the reverse flow observed in the measurements 

from r = 28 mm to the wall only extends from r = 32 mm in the predictions. 

At the centreline, a negative velocity is predicted instead of the 

small positive value measured as already indicated by under-prediction 

of the vortex length (e) in fig. 5.9. The calculated turbulence 

profile shows the now-characteristic flat appearance instead of 

the well defined peak of the measurements, the maximum of the former 

being about 60% of the latter. At z = 20 mm, the mean velocity 

agreement is quite good near the axis, although between r = 20 mm 

and the wall the predicted profile is smooth instead of the jet- 

like appearance of the measurements. The measured and calculated 

mean velocity profiles are of similar shape at z = 30 mm but from 

r = 20 mm to the axis, the latter has a steeper gradient such that 

the centreline velocity is negative instead of positive. The turbulence 

profiles here show good correlation. 

At the mid-stroke position (fig. 5.11), agreement of the 

mean velocity at z = 10 mm is poor: the reverse flow adjacent to 

the wall is not predicted, the peak is under-estimated by some 30% and 

displaced radially outwards, whilst at the axis, a large negative 

velocity is predicted instead of a small positive value. The well-

defined peak of the measured turbulence is replaced in the predictions 

by a smooth flat profile although two small maxima at r = 22 mm and 

r = 34 mm are evidenced in the latter. The predicted turbulence 

profiles at z = 3 mm show these maxima to be generated near the 

inlet and subsequently convected downstream although the measurements 
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here show only a single maximum. The calculated peak value here 

is only 20% below that measured. Two well defined maxima are also 

apparent in the measurements but much further downstream at z = 20 mm 

and their positions correspond to the shear layers on either side of 

the point of maximum velocity. It would seem that the predicted 

jet has expanded much more rapidly than the measurements indicate. 

. The mean velocity profile at z = 30 mm is in better agreement than 

at z = 10 mm or z = 20 mm although the peak is still under-predicted 

by some 20%. The small measured positive velocity at the centreline 

indicates that the experimentally observed recirculation zone extends 

at least 30 mm from the cylinder head whereas the predicted length 

is less than 10 mm. At z = 40 mm and z = 50 mm agreement of the mean 

velocity is good with the exception of the centreline value at the 

latter position. It is no surprise that the turbulence levels at 

the outer radii (r >15 mm) are under-predicted in view of the poor 

upstream correspondence. 

At 144°  (fig. 5.12), the mean velocity is in poor agreement 

with the measurements: the substantial reverse flow of the latter 

adjacent to the wall is not predicted, the peak jet velocity is 

only 40% of that measured and displaced radially outwards by 10 mm 

whilst the centreline value is twice the magnitude and of opposite 

sign. The turbulence shows a similarly poor correlation although 

the profiles at z = 3 mm suggest that sufficient turbulence is 

generated near the valve (the peak is under-estimated by about 20%) 

but is subsequently either dissipated too rapidly or diffused radially 

at a greater rate than occurs in the measurements. It appears that 

the predictions have a higher radial velocity than in the experiments; 

this is not however due to the swirl as the same trend was in 

evidence in the no-swirl calculations. Further downstream, the agree- 
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ment improves and from z = 50 mm to z = 80 mm the comparison is 

quite good with the exception of the centreline velocity near the 

piston. The turbulence shows reasonable correlation for r <15 mm and 

z > 40 mm but agreement is poor at the outer radii where the measure-

ments still show the influence of the intake jet. 

Agreement at 270°  (fig. 5.13) is worse than the no-swirl 

case, with substantially over-estimated velocities for r <15 mm 

from z = 20 mm to z = 50 mm. At z = 3 mm, where the influence of the 

valve is strongly fēlt, the peak mean velocity is over-estimated 

by 20% but the turbulence is too high by a factor of 4. 

Fig. 5.14 shows a comparison between the measured and predicted 

swirl velocity profiles. The 36°  profiles compare favourable with 

the measurements with errors generally much less than 20%, with the 

exception of the region between r = 25 mm and the wall at z = 10 mm. 

At 90°, the effects of the large intake-induced recirculation centered 

at (b) (fig. 5.9) can clearly be seen in that angular momentum is 

transported radially inwards to region (d) and the subsequent 

"spin-up" effect results in peak swirl velocities close to the 

centreline. Although there are areas of disagreement, notably at 

z = 10 mm and z = 50 mm the trends are otherwise well predicted. The 

calculated profiles at z = 30 mm and z = 50 mm show a greater 

decay of swirl velocity from r = 25 mm to the wall than is measured 

although this is probably due to the poorly-predicted intake jet. 

The 144°  profiles show better agreement close to the wall but the 

measurements for r <15 mm at z = 20 mm and z = 30 mm are only about 

50% of those in the calculations. It will be recalled that the 

predicted axial velocity was in poor agreement in this region, 

and the high negative values calculated probably account for the 

increased transport of angular momentum with the associated higher 
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swirl velocities. Near the centreline (r < 10 mm) for z > 50 mm 

the measurements show steeper gradients than the calculations. 

At 270°, agreement is good for all profiles. 

Case 3 - Cylindrical Piston Bowl Without Swirl  

A set of measurements obtained by Yianneskis.(1977), not 

described in chapter 2, are available for a simple cylindrical piston 

bowl inserted in the same configuration as Cases 1 and 2, without 

swirl. The dimensions of the bowl are shown in fig. 2.18 and 

the geometry and operating conditions are otherwise identical to 

case 1. 

Experimental streamlines are not available for this case 

and the predicted velocity field, shown in fig. 5.15, may be compared 

with the no-bowl calculations of fig. 5.4. At all crank-angles, the -

influence of the bowl on the overall flow pattern is seen to be 

negligible, which is not surprising in view of the absence of 

compression and the high piston-cylinder-head TDC clearance. The 

only observation that can be added to the description of case 1 is 

that the flow within the bowl is relatively unaffected by intake and 

remains one-dimensional throughout the cycle although as will be 

seen below, quantitative agreement is not as good as case 1. 

A detailed comparison of the axial velocity and turbulence 

intensity profiles for this case is shown in figs. 5.16 to 5.19. 

Agreement of the mean velocity is worse than the no-bowl case at 

36°: at z = 10 mm, the predicted peak value of the intake jet is 

only 50% of that measured and the reverse flow extending from 

r = 29 mm to the wall is not predicted. The comparison is better 
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near the axis but further downstream at z = 20 mm, whilst the 

measurements have retained their jet-like appearance, the calculations 

show a flat profile with no sign of either the peak at r = 24 mm 

or the negative axial velocities between the centreline and r = 17 mm. 

The turbulence maximum is under-predicted by 40% at z = 10 mm although 

on both sides of the jet, agreement is much better. However, the 

predicted turbulence decays more rapidly than is indicated by the 

measurements, a trend also apparent in the previous predictions, such 

that at z = 20 mm, the predicted turbulence level is only 20% of 

that measured. In the bowl, the mean velocity shows neither axial 

nor radial variations (with the exception of the gradients at the 

surface) and the absence of any appreciable stresses near the centre 

is reflected in low turbulence levels there. Agreement of both 

mean and turbulent velocities is good at the entrance of the bowl 

but towards the bottom, calculated values of the latter are only about 

30% of the measurements. 

At 90°  (fig. 5.17), agreement of the shape of the mean 

velocity profile is reasonable at z = 10 mm although the peaks of 

both quantities are under-estimated, in the case of the turbulence, 

by 50%. Further downstream, the correlation deteriorates: at 

z = 30 mm for example, the peak predicted velocity is only 35% of 

that measured and the position of the latter is about 5 mm closer 

to the wall. The position of zero axial velocity is displaced by 

a similar amount to the peak value and the magnitude of the reverse 

flow at the centreline is half that of the measurements. The turbulence 

is also under-predicted and shows a flat profile instead of the double 

maxima of the measurements. At z = 50 mm and z = 55 mm, the mean 

velocity agrees better, probably because this region of the flow is 

influenced more strongly by the piston motion than the intake jet, 

although it is still under-predicted, as is the turbulence. In the 
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bowl, agreement is quite good for both quantities, with the essentially 

one-dimensional velocity profile as earlier in the cycle and low 

turbulence levels. 

At 144°  (fig. 5.18) the same comments apply as at 90°. 

During exhaust (fig. 5.19), agreement is better than induction with 

errors in the mean and turbulent velocities up to 25% and 50% 

respectively. 

Assessment of Cases 1, 2 and 3  

Errors in the predictions may originate from any of three 

major sources; namely, specification of the valve boundary conditions, 

numerical errors and inadequacies of the turbulence model although 

it is'extremely difficult to isolate the relative influence of each 

because of the complexity of the flow and cost limitations on grid 

refinement. Further, it has been assumed up to now that the measure-

ments are without errors; this is not the case and more will be 

said of this later. 

There are assumed features of the mean flow boundary conditions 

at the valve which are know to be incorrect: firstly, the assumption 

of a uniform profile, and secondly, the specification of a constant 

estimated exit flow angle. Measurements of axial velocity at 

z = .5 mm for case 1, shown in fig. 5.20, indicate a maximum value 

at approximately the mid-point of the valve. The variation over the 

orifice is not insubstantial although it is unlikely that profile 

specification errors are as important as the flow direction. Unfortunately 

measurements of the radial velocity component are not available and 
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therefore the behaviour of the inlet angle during intake must remain an 

unknown. Attempts to estimate the angle from the measured downstream flow 

can be misleading as the effects of the primary recirculation in the 

cylinder on the jet are strong. 

The grid dependence tests for a closed cylinder and 

cylindrical piston bowl geometry described in section 4.5 showed 

that fine grids and small time-steps enhance the maxima and minima 

in both mean and turbulent velocities, or conversely, coarse grids 

and long time-steps have a smoothing effect. It was also mentioned 

in section 4.5, in the context of differencing schemes, that false- 

diffusion errors are worst when the mean flow direction is oriented 

at an angle of 45°  to the grid. It would seem that for the entire 

intake period, these particular experiments and predictions have 

all the ingredients for maximising these numerical errors in the 

important inlet region: the flow is jet-like with a well defined 

peak and steep velocity gradients, and oriented at about 45°± 20°  

to the grid, which in turn, is too coarse to adequately resolve 

a flow of this nature. A trend observed in all cases is that the 

predicted velocity decay of the jet is too rapid and the initially 

well defined peak soon deterioratesinto a flatter profile; this is 

in keeping with the nature of the numerical errors. The turbulence, 

in general, is under-predicted and unlikely to account for the higher 

calculated spreading rate. 

It is improbable that the low values of turbulence boundary 

conditions specified at the inlet are the cause of the poor 

agreement of the turbulence profiles as the measured axial turbulence 

intensity at z = .5 mm (fig. 5.20) is much lower than the levels 
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found further downstream, indicating that most of the turbulence 

is generated in the shear layers of the jet. Also, the z = 3 mm 

profiles of figs. 5.11 and 5.12 show that nearly adequate turbulence 

levels are generated close to the valve in the predictions but the subsequent 

dissipation and/or diffusion is too rapid. The numerical errors already 

described apply equally to the turbulence, but here, there are further un- 

certainties in the calculation of both the convective transport 

and production of turbulence because of the numerical smearing 

of the mean velocity. 

Turning now to the experiments, there are two factors 

that serve to increase the measured turbulence levels above their 

true values. The first is cycle-to-cycle variations, the effect 

of which was discussed earlier in section 3.6. The measurements 

of Lancaster (1976), described in section 2.2 , showed that for 

a cylindrical disc chamber geometry, the "turbulence" may be augmented 

by up to 35% due to cyclic variations in the flow. Unfortunately 

without a continuous signal (as is obtained with HWA) it is 

impossible to estimate the magnitude of this effect and it can only 

be stated that cyclic variations will invariably be present 

in these data and the true turbulence will be less than that measured, 

but by how much is not known. 

The other source of error is introduced not by the measure- 

ments but by the subsequent processing and results from the use 

of a finite-sized crank-angle window over which the measurements are 

averaged. Unlike cycle-to-cycle variations, the magnitude of this 

effect is more easily determined by simply processing the same data 

with different size windows. Morse et al (1978) state that the 

differences in mean and turbulent velocities using 10  and 10°  windows 
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(100  was used for all measurements in the cases examined here) were 

of the order 3% and 15% respectively. However, these differences are 

only found near the axis and the jet edge where, at certain parts of 

the cycle, the variation of mean velocity and count rate are large. 

Typically, the turbulence errors would be lower (Morse et al (1978) have 

estimated 10%). 

One final point not so far mentioned is the deviation from 

isotropy of the turbulence. An assumption invoked in the development 

of the turbulence model is that the axial, radial and swirl fluctuating 

components are equal, but a limited number of measurements of all three 

components (Morse et al, 1978) indicate that this is not the case in 

practice. Typically, at the mid-stroke position, the maxima of the 

radial and swirl components at z = 10 mm for case 2 gave values of 75% 

and 60% of the axial component. If these measurements were averaged 

to produce a single value of the turbulent velocity (and strictly 

speaking, this is the quantity that should be compared with the 

calculated turbulent velocity), this would be about 80% of the axial 

component and agreement with the predictions would be correspondingly 

better. 

In summary, the major features of a very complicated flow 

structure are reasonably well predicted although a detailed quantitative 

comparison has revealed errors in the intake jet which subsequently 

affect the rest of the flow. A number of factors have been identified 

as sources of error, some of which are beyond the control of both 

experimentalist and theoretician, such as cyclic variations; but 

others, namely, grid dependence and crank-angle broadening are 

correctable. 
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5.3 Cases (4) and (5) - Comparison with the Data of Witze  

The section describes a comparison between the flow calculations 

and single point mean and turbulent velocity data derived from HWA 

measurements in the single valve, axisymmetric engine configuration of 

Witze (1976c), described in section 2.4. Calculations have been 

performed for both flat and cylindrical-bowl cylinder heads although 

it will be recalled that the HWA signal processing method used for the 

latter is likely to be incorrect (see fig. 2.16 for a comparison between 

the original and amended data for the flat cylinder head geometry). 

This is unfortunate as it makes a comparison during the compression 

period questionable for this case, but does nevertheless allow a 

reasonable assessment to be made during the intake and exhaust phases. 

Fig. 4.4 and 4.5 show the computational grids used for both cases. 

In order to improve the resolution of the intake jet near the valve, 

grid lines have been concentrated in the cylinder head with additional 

moving grid lines introduced between the cylinder-head and valve when 

the latter is open, in the manner described in section 4.4. The 

valve lift is specified according to fig. 5.21, taken from Witze (1976c). 

The specification of the inlet flow angle presents the same 

problems as cases (1) to (3) but in this exercise, there was no 

guiding information in the form of detailed measurements, and in 

the absence of any feasible alternative, the air was assumed to enter 

at the valve seat-angle of 45°. Similarly, no pressure-drop- 

flow data was available for the valve/port assembly and the effective 

area, required for the calculation of the mass flow rate, was 

calculated as the product of the time-varying geometric area extending 

from the periphery of the valve to the valve seat and an assumed 

constant discharge coefficient of .6. 
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The ambient pressure and temperature were specified as 

105  N/m2  and 310°K whilst the cylinder head, wall and piston 

temperatures were assigned the values 400°K, 350°K and 325°K. The 

measurements for case 1 indicated that much of the turbulence is 

generated inside the cylinder and the values of turbulence energy 

and dissipation rate at inlet were therefore assigned small values 

of 10-5  m2/s2  and 10-5  m2/s3  respectively. For both the geometry 

variants the engine speed is 1500 rev/min. 

Calculations were started at TDC with the valve open and 

a uniform pressure and temperature equal to the ambient values. 

Both axial and radial velocity components, the turbulence energy and 

dissipation rate were initially set to zero. 

Case 4 - Compression of 4-Stroke Engine with Flat Cylinder Head  

Figs. 5.22 and 5.23 show respectively the velocity and 

turbulence fields at crank-angles of 60°, 120°, 180°, 360°, 540°  

and 630°  (0°  and 360°  correspond to TDC during valve-overlap and 

TDC of compression). The velocity fields are plotted in the same 

format as before whilst the turbulence is presented as contours of 

iso-turbulence intensity (= )2/3k/vH, where 
vH 
 is the mean piston 

speed). 

At 60°, the intake jet generates two toroidal vortices of 

considerable strength, and in many respects, quite similar to the 

structure in the non-compressing engine. High levels of turbulence 

are produced at the valve and where the jet impinges at the wall 

and this turbulence is subsequently transported downstream into 
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the main eddy in the cylinder. The eddy adjacent to the cylinder head 

remains essentially unchanged in shape throughout intake although its 

centre shows a progressive tendency to move nearer the cylinder head 

as the piston approaches BDC; the primary recirculation,  grows to 

fill the cylinder. The turbulence levels at the valve decay during 

the latter stages of intake until at BDC (1800), the maximum is found 

in the centre of the cylinder. Both mean and turbulent velocities 

decay during compression until at TDC (360°), only very weak residual 

recirculation is observed in the clearance space with low turbulence 

levels. During expansion, the motion decays still further until EVO 

(470°) at which time air enters the cylinder as pressure in the latter 

has fallen below the ambient value. The inflow is such that by BDC 

(5400) both a definite flow structure and reasonably high turbulence 

levels are evident. It is interesting that the structure of the mean 

flow is quite different from that produced during the intake stroke. 

This is probably because the velocities are substantially lower and 

the weak jet is entrained by its own recirculation zone such that 

it follows a path into the cylinder-head - wall corner and then along 

the wall. This structure breaks down soon after BDC by explusion 

of the gas through the valve by the piston, resulting in a flow of 

sink-like appearance for the entire exhaust stroke, of which the 

structure at 630°  is typical. Substantial turbulence is again 

generated at the valve but the effects are localised. 

A comparison between the measured and calculated mean* and 

turbulent velocities at the position marked 'X' in fig. 2.15 is shown 

in fig. 5.24. Also shown are the mean velocities at positions 

*Defined as the absolute value of the resultant of the axial and 
radial velocity components. 
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displaced 	1.27 mm (.05 in) of the nominal probe position in 

both the axial and radial directions; this is included to give an 

indication of the errors that would be introduced by a mis-positioned 

probe or an incorrect inlet flow-angle specification. During intake, 

the measurements and predictions are in reasonable agreement, 

with the exception of the initial stages where the latter show a 

steeper rise and a local maximum at about 60°. Judging by the 

calculated velocities at the surrounding positions, the probe is 

positioned in a region of extremely high shear and it must be regarded 

as fortuitious that the measured and predicted peaks agree to 

within 5% as even a slight deviation from the 45°  inlet flow angle 

or a mis-positioned probe would have produced very different results. 

The turbulence peak is under-predicted by about 30% although the 

trend is otherwise very similar. Both measured and predicted mean 

velocities show a slight rise during the early stages of compression 

but subsequently decay until exhaust valve opens. The measured 

turbulence level shows a similar trend to the mean velocity but 

the calculated values decay continuously after the intake maximum. 

Near BDC, the calculated mean velocity shows a small initial peak 

from the gas inflow followed by a much larger peak at the mid-stroke 

position as the gas is expelled by the piston. For some reason, 

the measured peak occurs just after BDC with a subsequent decay 

until TDC. The measured turbulence shows a similar peak but the 

calculations retain a relatively constant level during this phase. 
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Case 5 - Compressing 4-Stroke Engine with Bowl-in-Head  

Figs. 5.25 and 5.26 show the velocity and turbulence fields 

at various crank-angles through the cycle. At 60°, the structure 

near the valve is very similar to that found in the flat cylinder-head 

geometry with vortices (a) and (b) on either side of the intake jet. 

Impingement of the jet occurs on the side face of the cylinder-head, 

causing further impingement on the piston, which eventually results 

in a strong eddy in the outer clearance space (c). As in Case 4, the 

intake process generates high turbulence which is convected into 

this eddy. At 90°, the eddy (c) has extended with the piston motion 

whilst (b) is distorted by the inward radial growth of the former 

such that at 120°  a further weak vortex (d) is formed just above the piston 

near the axis. Production of turbulence at the valve remains high 

during this period. By BDC, intake has finished and the residual 

flow pattern, although similar to that earlier, is much weaker 

and turbulence in the cylinder has decayed. At 210°, outflow through 

the valve is observed just before the valve closes and there is a 

further decay of both mean and turbulent velocities which continues 

throughout compression until at TDC there is little air movement 

within the bowl and a turbulence intensity maximum of .5. The high 

bowl-to-cylinder diameter ratio of .67 results in negligible 

squish effects (Fitzgeorge and Allison, 1963). At the mid-stroke 

position during expansion (450°) the flow is virtually one-dimensional 

until the valve opens such that at 510°, an initial inflow directed 

radially outward across the face of the cylinder head again creates 

high turbulence at the valve entrance. By BDC (540°) the inflow 

has created a structure identical to that found during induction 
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with the associated turbulence convected into the cylinder. As the 

piston moves towards TDC, so the gas is expelled and a flow of sink-

like appearance is formed at the valve with high localised turbulence, 

comparable in magnitude to that of intake. At TDC (720°) a weak 

eddy is observed in the bowl and the turbulence levels are low. 

A comparison between the single point mean and turbulent 

velocity measurements is shown in fig. 5.27. During intake the predicted 

mean velocity is 30% higher than that measured, although it should 

be remembered that this experimental data is uncorrected and the 

revised results for the flat cylinder-head case resulted in a 10 m/s 

increase in the peak value (see fig. 2.16). In contrast, the turbulence 

maximum is under-predicted by 30%. The behaviour of the predictions 

just after BDC is probably caused by the change in flow structure 

resulting from the outflow just before valve closing. The compression 

period should be ignored in view of uncertainties about the data. 

In view of the complexity of the exhaust phase flow structure, 

with an initial inflow directed radially across the face of the cylinder 

head (510°), followed by a flow of intake-like appearance with two 

eddies (540°) and eventually outflow (630°), the variations 

in both the mean and turbulent velocities are in reasonable agreement. 

The magnitude of the mean velocity just before BDC (540°) is under-

predicted as is the peak during gas explusion at approximately 650°, 

but the phasing is essentially correct for both quantities. The 

reason for the discontinuity in the measured turbulence at 430°  is 

not known as the valve has not yet opened and there are no obvious 

reasons why the flow should be disturbed. 
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Assessment of cases 4 and 5  

The probable sources of error identified for cases (1) to 

(3) will also apply to this engine. An effort has been made to 

reduce the numerical errors in these calculations however by using 

a high concentration of grid lines in the cylinder head to resolve 

the intake flow. Resolution elsewhere in the field suffers as a 

consequence (see, for example, 180°  in fig. 5.24 where the vector 

plot shows poor definition in the cylinder) but as the influence of 

the primary eddy in the cylinder on the velocities at the measuring 

position is probably small compared with the intake jet, this is of 

secondary importance. 

Unlike the non-compressing engine, the accurate calculation 

of the pressure and temperature are important here, as the difference 

between the cylinder and ambient pressure determines the mass inflow 

or outflow and hence the velocity boundary conditions at the valve. 

Although pressure measurements through the cycle are not available, 

it is likely that pressures are calculated reasonably correctly as the 

maximum values at TDC are within 7% of those quoted by Witze (1976c) 

for both configurations. 

The generally good agreement between the measured and predicted 

flow structures for cases (1) to (3) suggests that these flow patterns 

may also be correct. Bearing in mind the complexity of the flow 

structure, in one case with no less than four co-existing toroidal 

vortices, the overall agreement is good. However, without measurements 

elsewhere in the cylinder it is impossible to judge whether such 

agreement would be universal or is confined to the measuring position. 
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5.4 Case(6)- Comparison with the Data of Dao et al  

This section describes a comparison between the measurements 

of Dao et al (1973), described in section 2.4, and predictions of the 

instantaneous heat flux at 4 locations on the cylinder head of a 

motored engine with a simple cylindrical piston bowl. The engine 

dimensions and measuring positions are shown in fig.2.21 and the 

computational grid in fig. 5.28. The calculations were started at 

BDC with an imposed solid body swirl structure equivalent to a 

swirl ratio (SR) of 7.3, estimated from an equation taken from the 

reference cited, that is: 

SR 	
a(N )b-1 (CR-1)  
30 	

_CR 

where a and b are constants that depend on the shroud angle of a 

masked valve and assigned the values 4.89 and 1.14 for the 90°  shroud 

used, N is the engine speed (900 rev/min) and CR is the compression 

ratio (14:1). The axial and radial velocity components,and the turbulence 

energy and dissipation rate were assumed to be zero at BDC. This is 

obviously not the case and the sole justification for this practice 

is that in the absence of any better information, the early inlet 

valve closing at 35°  ABDC will allow sufficient time before TDC for 

the decay of the intake generated structure to levels much lower than 

those produced by subsequent squish effects. This decay process during 

the early stages of compression has been confirmed experimentally 

by a number of investigators, described in section 2.2, and was also 

observed in the bowl-in-head computations of case 5, although squish 

effects were negligible in the latter case. The gas temperature 

and pressure at BDC were assumed uniform and assigned the values 

311°K and 1.2 x 105  N/m2. The piston and cylinder-wall temperatures 

were assumed constant through the calculation and assigned typical 
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values of 320°K and 333°K. The instantaneous cylinder-head temperature 

was measured however, and this was approximated in the calculation 

by specifying a time-varying sinusoidal variation between the limits 

328°K and 356°K at BDC and TDC respectively. These surface temperatures 

cannot be too far in error as the predicted maximum cylinder pressure 

was subsequently calculated as 37.1 x 105  N/m2  whilst the measurements 

varied between 35.5 x 105  N/m2  and 37.5 x 105  N/m2. 

Before discussing the heat flux predictions, it is instructive 

to examine the calculations of the flow field near TDC. Fig. 5.29 

shows the predicted flow structure at a number of crank angles between 

30°  BTDC to 30°  ATDC; these are plotted in the form of velocity 

vectors and contours of iso-swirl velocity and turbulence intensity 

(the latter is normalised by the mean piston speed as usual) with 

the iso-values equally spaced. At 30°  BTDC, the velocity vector field 

shows the start of squish effects and the gas displaced from between 

the clearance space passes along the side face of the piston bowl. 

This contrasts with calculations without swirl or with low swirl 

levels' where a dominant toroidal vortex is formed within the 

bowl (see appendix 4). The swirl iso-values show an essentially 

solid-body rotation in the bowl. Considerable turbulence is generated 

between the piston top and cylinder head by the squish and the shear 

stresses associated with gradients of swirl velocity; 	high levels 

are also found in the bowl, in this case augmented by the transport 

of turbulence from the squish region. 

The structure at 15°  BTDC shows an increase in the squish 

velocities and localisation of the maximum swirl velocity near the 

lip of the piston. This latter phenomena results from convection 

of angular momentum radially inwards by the squish motion from the 
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outer radii with the associated "spin-up" effect. The turbulence 

shows maxima at the lip and in the centre of the bowl and the structure 

suggests that the high levels in the latter result primarily from 

convection of the turbulence produced in the clearance space, although 

examination of the turbulence structures at 6°  BTDC and TDC, when 

convective transport by the squish is small, revealsincreased maximum 

values. One must therefore conclude that it this- stage most of the 

bowl turbulence is produced in the bowl itself, probably from shear 

stresses associated with the swirl as the axial and radial velocities 

are low. The 6°  BTDC structure is otherwise very similar to that at 

15°  BTDC with negligible axial and radial velocities towards the 

centre of the bowl and a swirl maximum near the lip. The effect of 

the squish flow along the piston side-face on the convective transport 

of swirl momentum can be seen at TDC, where the maximum swirl velocity 

contour extends almost to the bottom of the bowl. 

At 6°  ATDC, reverse-squish flow into the clearance space can be 

seen. The swirl and turbulence structures are much the same as those 

at TDC although with a slight decay in the levels of both. At 12°  

ATDC the reverse squish flow is observed to break away near the lip 

and impinge on the cylinder head with a corresponding increase in 

the turbulence in this region. At 15°  ATDC and 18°  ATDC the picture 

is similar, with a small reverse-squish induced vortex at the lip 

and extremely high localised turbulence adjacent to the cylinder head. 

The nearly equal spacing of the swirl iso-vels and the absence of 

any apprecialbe axial variation indicates solid body rotation within 

the bowl. At 24°  ATDC, the formation of a second eddy in the 

clearance space results from the deflection of the reverse squish 

flow by impingement on the cylinder head. The turbulence levels have 

decayed slightly, whilst the swirl shows much the same structure as 
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before although the transport of swirl momentum into the clearance 

space has reduced the velocities in the bowl. 

A comparison between the measured and calculated heat fluxes 

at the 4 radial positions on the cylinder-head is shown in fig. 5.30 

for the period 60°  BTDC to 60°  ATDC. At the innermost radius 

(r = .37 ins) the peak value is predicted well but the experimental 

trace shows two features not in evidence in the calculations: firstly, 

an initial maximum occurs around 10°  BTDC such that there is a phase 

difference between the predictions and measurements (this is not 

an error in plotting as the experimental trace was carefully reproduced 

from Dao (1972)) and secondly, two peaks exist. The reason for this 

behaviour of the experimental trace is unclear, as the effects of 

squish and reverse squish are not felt this close to the centre-line 

although three-dimensional effects, such as circumferential variations 

in the swirl velocity cannot be ruled out. 

At the two radii near the piston lip (r = .75 ins and 

r = .88 ins) the increased heat transfer rates are accurately 

predicted, although at r = .88 ins the value is over-estimated 

slightly. This increase results from the high turbulence levels 

adjacent to the surface both before and after TDC. Both measurements 

show the existence of two spikes near TDC and Dao et al (1973) 

have attributed these to squish and reverse squish. This is probably 

correct and although the predictions do not have the same spiky 

appearance, a slight discontinuity is observed at about 15°  ATDC 

which corresponds to the occurrence of high, reverse-squish induced, 

turbulence levels adjacent to the cylinder head. 
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At r = 1.3 ins, agreement is excellent although the 

spike observed in the measurements at approximately 20°  ATDC, probably 

due to reverse squish effects reaching the outer radii, is not predicted. 

Assessment of Case 6  

Apart from the minor discrepancies already mentioned, these 

predictions compare favourably with the experiments. The heat transfer 

is a sensitive indicator of the accuracy of most of the flow properties, 

as its evaluation depends on the gas temperature and heat transfer 

coefficient, the latter quantity being derived from the local turbulence 

levels, which in turn are strongly dependent upon the velocity field. 

There are however uncertainties arising from both the initial 

conditions and the flow structure produced by the off-set valve. For 

the former, the assumption of zero turbulence and the axial and 

radial velocity components at BDC are unrealistic, but it is unlikely 

that this introduces any significant errors because of the decay 

process during compression and the strength of the squish-induced 

motions, as already indicated. However, a recent analysis of intake 

generated swirl structures by the author, not reported in this thesis, 

seems to indicate that, in contrast with the turbulence and axial 

and radial velocities, whatever swirl structure is produced during 

induction remains relatively intact during compression. Thus, if 

the structure produced by the valve is strongly three-dimensional 

and the assumption of a solid-body swirl rotation is wrong; the 

effects would persist until TDC, although in the absence of any velocity 

measurements it is impossible to quantify any such errors. 
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Nevertheless, there are two factors that contribute to these 

calculations conforming with the limits of both the modelling and 

the numerical method. Firstly, the flow in the clearance space 

around TDC is nearly one-dimensional and it will be recalled from 

chapters 3 and 4 that the boundary conditions are based upon a one-

dimensional analysis of the near-wall region. Secondly, the relative 

simplicity of the flow and the high number of grid lines packed 

into the clearance space possibly result in a grid independent 

solution (although it should be stated that grid dependence tests have 

not specifically examined this aspect). If these observations are 

correct, then it is reasonable to assume that under ideal conditions, 

the heat-transfer model is capable of accurately calculating 

the surface heat transfer. Conditions elsewhere, for example in the 

bowl, are not as ideal as in the clearance space, and it should not 

be assumed that agreement here would be as good. 

5.5 Comparison with the Simple Theories of Squish and Swirl  

Comparisons are here made with the simple theories of squish 

and swirl due to Fitzgeorge and Allison (1963), described in section 2.3 

Although not a true validation test in the sense that these theories 

represent only a simplified picture of the in-cylinder processes, 

there is some evidence, (for example, Dent and Derham, 1974), that 

reasonable agreement with experiment can sometimes be obtained with 

them. The details and results of these comparisons were published 

by Gosman and Johns (1978a)and reference is made to appendix 4 

which includes a copy of this paper. The main findings of this 

exercise are given below: 
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1. Agreement with the simple theory of squish is good, and 

the assumptions of one-dimensional flow, negligible 

influence of heat transfer and essentially uniform pressure 

and density fields throughout the cylinder are confirmed 

as being correct. 

2. A reverse squish phenomena, not mentioned by Fitzgeorge 

and Allison, that creates a strong recirculation in the 

clearance space after TDC is observed (see fig.3 	in 

appendix 4). Experimental evidence of this has been 

reported by Woods and Ghirlando (1975) and Dicksee (1940). 

3. The finite-difference calculations do not agree with the 

closed-cycle part of the Fitzgeorge and Allison swirl 

analysis. The assumption used by the latter authors, and 

others,that an initial solid-body rotation persists through 

the compression period is reasonable (evidenced in the 

iso-swirl velocity contours of case (6)) but the decay 

of swirl momentum between BDC and TDC is found to be 

high, at least for high swirl rates (5-10); typically, 

the angular momentum at TDC is between .5 and .7 of the 

initial value at BDC. Modifications to the basic 

theory by Dent and Derham (1974) and Davies and Kent (1979) 

to account for surface friction using empirical formulae 

for turbulent flow over flat plates should be used if 

these losses are to be accounted for. 
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5.6 Closure 

In this chapter, comparisons have been made between 

calculations using the theoretical model described in chapters 3 and 

4 and experimental data for a number of engine configurations. The 

experimental data were chosen not for their diversity, as might at 

first seem the case, but because they represent the only available 

data in axisymmetric engines (at the time of writing) of adequate 

quality and approaching somewhere near the desired level of specification 

of geometry, boundary conditions etc. 

There are a number of lessons to be learnt from this validation 

exercise: 

(1) The existing theoretical model and numerical solution method 

is capable of producing prediction for very complicated 

flows in a variety of engines. These show good qualitative 

agreement with the measurements and under favourable 

conditions, reasonable quantitative agreement. 

(2) The greatest area of uncertainty in the modelling is 

the turbulence although implementation of the existing 

model to give solutions free from numerical errors has 

not yet proved possible. Judging by the measurements 

of the three velocity components of case 2, the isotropy 

assumption employed in the derivation of the turbulence 

energy equation appears to be incorrect. 

(3) This exercise has highlighted areas where further work is 

needed, namely, (a) the elimination of uncertainties 

in the valve boundary conditions, (b) the removal or 

reduction of grid dependence and false-diffusion errors 

and (c) signal processing methods that do not introduce 

additional "turbulence". 
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(4) The features of the method that allow solutions of the 

flow and heat transfer in piston bowls of complex shape 

have not been tested and data is urgently required 

to alleviate this deficiency. 
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CHAPTER 6  

APPLICATION TO PRACTICAL ENGINE CONFIGURATIONS  

6.1 Introduction  

The validation exercise described in the previous chapter 

examined a number of engine configurations and effects of governing 

parameters, but, until such time as data is available for a wider 

range of conditions in compressing engines, more comprehensive 

testing is not possible. The absence of data does not however preclude 

parametric studies of swirl level, bowl shape etc. since the comparisons 

thus far suggest that the prediction method yields results which are 

at least qualitatively correct; such studies should themselves provide 

guidance for further experimental work. 

Towards this end, section 6.2 of the present chapter describes 

briefly flow predictions in simple cylindrical piston bowls, both 

with and without lips, and at various levels of swirl. A more comprehensive 

study of bowl geometry effects is described in section 6.3, where the 

flow structures in five different re-entrant bowl configurations 

are analysed in depth, for conditions approximating as far as possible 

those found in operating engines, although necessarily within the 

overall constraint of an axisymmetric calculation. 

6.2 Predictions of the Effects of Swirl for Pistons with Cylindrical  

Bowls  

This section summarises the results of a preliminary investi-

gation into the effects of initial (BDC) swirl level on the flow 
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structure during compression and expansion in a simple cylindrical 

piston bowl both with and without a protruding rectangular-sectioned 

lip at entry. Details and results of this analysis were reported 

by Gosman and Johns (1978a)(see appendix 4) and for brevity, only 

the more significant features and findings are given here. 

The geometry and important dimensions of the engine are 

shown in fig. 6.1. Six conditions and configurations were analysed; 

in each case one cycle was computed in the absence of swirl the 

latter being subsequently imposed as a solid-body rotation at BDC 

of the second cycle with the swirl ratio (SR) varied between 0 and 10. 

The initial conditions .at the start of the first cycle and boundary 

conditions for the remaining variables were specified as for case (6) 

of section 5.4,i.e. zero axial and radial motion and uniform values 

of k, E and T. 	The grids used for each geometry are shown in fig. 6.2 

and although they are too coarse for quantitative predictions, they 

are believed to be adequate for a qualitative indication of the flow 

structure. The lip form and initial swirl ratio for each case are 

given below: 

Case Number 1 2 3 4 5 6 

Swirl Ratio 0 1 5 10 0 5 

No Lip V V V V 

Lip ✓  ✓  

The calculations were performed in the manner already 

described for all but one case (no lip, SR = 0) which was continued 

until cyclic operation was reached; this took 8 cycles. It was 

noted for this latter case that the flow structure around TDC 
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on the first cycle was indistinguishable from that on subsequent 

cycles when plotted, although a more detailed examination revealed 

quantitative differences. The reason for this is that the residual 

gas motion from a compression-expansion sequence decays considerably 

during the subsequent compression process such that around TDC, 

the flow is governed by squish and not by the immediate history of 

the flow. Thus, the single-cycle calculations of cases (2) to (6) 

are reasonably representative of closed-cylinder cyclic operation 

(although it should be stressed that in the absence of intake, 

the swirl would decay continuously unless re-introduced each cycle). 

The main findings of this exercise are summarised below 

(note that figure numbers refer to appendix 4) whilst a more detailed 

analysis of TDC flow structures is deferred until the next section. 

Base-Case - Cylindrical Bowl, No Swirl (figs. 3 and 4)  

(1) At BDC, considerable gas motion remains from the previous 

cycle but this is suppressed through the compression period and 

is not evident past 45°  BTDC. 

(2) By 21°  BTDC, squish effects induce a single toroidal vortex 

in the bowl which intensifies during the remainder of 

compression to TDC. 

(3) After TDC, a reverse-squish phenomena produces a strong 

recirculation zone in the clearance space between the 

piston and cylinder-head. 
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Effect of Swirl Level (figs. 6 to 8) 

(4) Increasing BDC swirl results in a progressively more complex 

flow structure in the bowl, with, for SR = 1,a small 

vortex formed near the bottom of the bowl in addition 

to the primary vortex, changing to two contra-rotating 

vortices of approximately equal size for SR = 5 and then 

to two co-rotating vortices for SR = 10. 

Effect of Lip (figs. 9 and 10) 

(5) The lipped bowl produces a similar structure to the 

cylindrical cavity piston of case (1) for SR = 0, 

but at SR = 5 although two contra-rotating vortices are 

also observed they are rotating in an opposite sense 

to those found in the cylindrical bowl at the same 

swirl ratio. 

This study both confirms a number of experimentally-

observed phenomena (to be identified below) and demonstrates the 

importance of swirl on the TDC flow structure. The formation of a 

toroidal vortex prior to TDC when swirl is not present and the existence 

of strong reverse-squish after TDC is in agreement with the experiments 

of Dicksee (1940) and Woods and Ghirlando (1975). The qualitative 

effects of swirl were identified by Dicksee (1940), who deduced 

that a double vortex structure is formed when swirl is present 

(see section 2.3) and although the bowl geometry used here differs 

from the toroidal bowl he investigated, they do serve to underline 

the importance of swirl on the TDC flow. 
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6.3 Predictions for Practical Re-entrant Bowl Configurations  

This section describes calculations in re-entrant bowl 

pistons typical of current designs, as shown in fig. 1.1. All of 

the bowl configurations investigated have been employed in engines 

and test-bed results of smoke, specific fuel consumption and 

equivalent nitrogen oxide are reported by Middlemiss (1978). The 

interested reader may wish to attempt to relate the changes in 

engine performance noted in the forementioned paper with the predicted 

flow structure obtained here for each case; however, in the 

absence of information from either source about the mixing and 

combustion processes, this is not an easy task and will not be 

attempted here. What is described, are both the common features 

and differences between the flow structures produced by the various 

designs. As with the swirl-level investigation described in 

section 6.2, these do not yet exist quantitative experimental 

data to support these calculations. 

Problems associated with calculations in practical engine  

configurations  

Firstly, it must be remembered that these calculations 

do not include the fuel air mixing and combustion processes, and 

as such, they do not provide a complete picture of the in-cylinder 

events. Secondly, in addition to the errors introduced by the 

turbulence modelling and numerical method of solution already 

discussed in chapter 5, two further uncertainties arise in 
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attempts to simulate real engines. The first stems from the three-

dimensional valves and piston bowl. Results of a study by Brandl 

et al (1979) using an engine with the usual off-axis inlet valve 

and with the axis of the piston bowl offset from the cylinder axis 

by a similar amount to the engines investigated by Middlemiss, 

indicate circumferential variations in swirl velocity of the order 

of 30% near the periphery of an open-chamber piston bowl and a 

strongly three-dimensional flow structure within the bowl. It is 

likely that differences of this order also exist between these 

axisymmetric calculations and the real engine processes. 

The second problem is arrving at initial (BDC) fields 

for the three velocity components and the various turbulence parameters 

for use in the calculations. The results of the previous section 

indicate that the initial axial and radial velocities and the 

turbulence energy and its dissipation rate are relatively unimportant 

in determining the TDC flow, however this is not true for the swirl 

velocity. In the absence of any swirl velocity measurements the 

practice followed here has been to use the Fitzgeorge and Allison 

(1963) method, described in section 2.3, to calculate the swirl 

momentum at BDC on the start of the compression stroke and to then 

assume a solid-body structure. The only departure between the 

Fitzgeorge and Allison method and that used here is that a more 

accurate filling-and-emptying cycle simulation program (Johns, 1975) 

was employed to calculate the mass inflow through the valve instead 

of the "perfect-displacement" assumption. 
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Geometry Details  

Of the five different bowl configurations investigated 

four have been run in engines of otherwise identical design, whilst 

the fifth, although employed in an engine differing slightly 

from the others in all major details (bore, stroke, speed etc.) 

is included because of the particularly interesting flow structure 

it produces near TDC. 

The bowls are classified according to the numbering system 

of fig. 1.1 and the important details of each are given below: 

Bowl 1.11 1.2 1.12 1.3 1.15* 

Throat dia.(mm) 31.5 31.5 31.5 40.6 39.2 

Flank angle 50°  20°  70°  90°  45°  

Rounded lip ✓  ✓  

Straight-sided 
lip 

✓  ✓  ✓  

*Not illustrated in fig. 1.1 

Details of the engines are given below: 

Bowls 1.11, 1.2, 1.12 and 1.3  

Bore - 91.4 mm 

Stroke - 127 mm 

TDC clearance - .127 mm 

Con-rod length - 223 mm 

Compression ratio - 21:1 

Speed - 1400 rev/min 

BDC swirl ratio - 3.3 
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Bowl 1.15  

Bore - 98.4 mm 

Stroke - 89 mm 

TDC clearance - .127 mm 

Con-rod length - 225 mm 

Compression ratio - 15.5:1 

Speed - 1428 rev/min 

BDC swirl ratio - 2.02 

Computational Details  

Curvilinear-orthogonal grids were generated for each bowl 

volume using the method described in appendix 1. The complete grids 

for each configuration are shown in figs. 6.3 to 6.7. Grid refine-

ment tests were not undertaken for this exercise and these results 

are therefore only believed to be qualitatively correct. The 

computational time step was set at 10. The calculations were 

started at BDC with the initial conditions prescribed in the same 

fashion as in the previous section with the exception of the swirl, 

which was imposed at the start of the calculation. 

The output from each run is shown graphically in the 

same format as before, that is, in the form of velocity vectors 

and contours of iso-swirl velocity and iso-turbulence intensity. 

The changes that occur in the flow structure around TDC are 

adequately displayed by plots at crank-angles of 30°, 15°  and 6°  

BTDC, TDC and 6°, 15°  and 30°  ATDC although difficulties in reading 

the magnetic tape used to store the data for the 1.2 bowl at 6°  

ATDC prevented this information from being plotted. 
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Predictions for the 1.11 Bowl Configuration  

At 30°  BTDC (fig. 6.8a), the squish process induces a flow 

directed around the piston lip and into the bowl, which detaches from 

the underside of the lip just inside the bowl and forms a small 

recirculation zone there. The swirl velocity contours show the effects 

of transport of angular momentum radially inwards from the clearance 

space, which results in increased swirl *velocities in the entrance 

of the bowl from the "spin-up" effect and an axial variation that 

is characteristic of all of the present calculations. This trend of 

higher rotational speeds above the piston before TDC is confirmed 

experimentally by Brandl et al (1979), who also found the opposite 

behaviour after TDC, that is, the gas in the bowl rotates faster; 

the present predictions are also in agreement with this latter finding, 

as will be seen later. Turbulence is generated near the lip from 

the stresses associated with the squish-induced jet and a local 

maximum is found there. 

At 15°  BTDC, the flow follows the contour of the curved 

lip and a single dominant toroidal vortex is formed in the bowl. 

It should be noted that the direction of rotation of this vortex 

is opposite in sense to that found in no-swirl calculations 

(see fig. 11 of appendix 4 which shows the TDC structure of this 

bowl in the absence of swirl). The reason for this is that in 

the presence of swirl, the radially-inward squish jet is unable 

to reach the axis because of the opposing centrifugal force and 

is constrained to flow around the corner. The swirl velocity field 

shows a much increased and more localised maximum value in the mouth 

of the bowl and the effects of swirl momentum transport by the 

squish along the bowl wall are evidenced by high values there; 

elsewhere in the bowl, the increases are not so dramatic. The 
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turbulence also shows increased values and extending over a greater 

area than previously. The high turbulence levels near the axis are 

probably caused by the curvature of the flow as the gas from the 

main squish-induced vortex is deflected by the cylinder head. 

A further eddy has formed in the mouth of the bowl by 

6°  BTDC (fig. 6.8b), a feature found in all of the calculations, 

and is created by the strong squish at this stage, the maximum 

squish velocity occurring at about 5°  BTDC. The sense of rotation 

of this eddy is the same as the single toroidal vortex found in no- 

swirl calculations and is generated by the same mechanism. The effect 

of this eddy is to attenuate the recirculation of the primary 

vortex near the cylinder head and produces a relatively stagnant 

region near the axis. Squish effects continue to dominate the 

swirl structure in the bowl entrance as signalled by an increased 

maximum value and a radially-inwards shift in its location. Turbulence 

levels in the bowl are generally about the same as at 15°  BTDC with 

the exception of regions adjacent to the lip where high values 

and high gradients are found. 

The picture is similar at TDC, although the small lip-eddy 

has been distorted by the primary vortex and a further weak eddy has 

appeared near the axis at the bottom of the bowl. Both the swirl and 

turbulence fields exhibit the same structure as before, the former 

having increased slightly in value with the position of the maximum 

moved further inwards, whilst the latter has decreased in value. 

Swirl velocities in the bowl are generally about three times those 

at 30°  BTDC. 
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The squish-induced lip-eddy disappears quickly after TDC and a 

sink-like flow into the clearance space is observed at 6°  ATDC (fig. 6.8c). 

The primary vortex is still apparent but considerably reduced in 

strength. The reverse-squish flow has increased the 

radial extent of the maximum swirl velocity contour and its value 

is about half that at TDC. Interestingly, the flow near the axis 

is virtually solid body in structure for the entire distance between 

the cylinder head and bottom of the piston. It would seem that in 

the absence of any appreciable axial and radial velocities, the swirl 

soon reverts to its equilibrium structure of solid body rotation. 

The position of the turbulence maximum has shifted into the clearance 

space adjacent to the lip and is produced by the reverse-squish flow 

around the lip and not by transport of the pre -TDC squish-generated 

turbulence, as this trend continues long after TDC. 

The squish-induced primary vortex has virtually disappeared 

by 15°  ATDC (A feature found in all of the predictions is that 

recirculation in the bowl ceases fairly quickly after TDC). The 

region of solid-body rotation has extended radially, and the experimentally- 

observed trend, mentioned previously, of higher rotational speeds 

in the bowl is evidenced in the predictions by the low swirl 

velocities in the clearance space. This post-TDC "spin-down" 

effect is a reverse mechanism of the pre-TDC "spin-up". The 

turbulence maximum has decreased slightly, but the trend of high 

reverse-squish-generated turbulence adjacent to the lip continues. 

The picture is similar at 30°  ATDC (fig. 6.8d) although, 

somewhat surprisingly, the maximum swirl velocity in the bowl has 

increased slightly. The only explanation that can be offered 

for this is that swirl momentum from the curved region of the bowl 
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has been transported inwards as a result of the outflow from 

the bowl and the decreasing radius has caused a swirl speed increase. 

Predictions for 1.2 Bowl Configuration  

This bowl differs from the previous case by having a 30°  

steeper angle side wall. The overall picture at 30°BTDC (fig. 6.9a) 

is very similar to the 1.11 bowl calculations in both structure 

and magnitude, with the exception of the flow around the lip 

which shows a more pronouced detachment due to the steeper angle 

of the wall. Unlike the previous predictions, the flow does not 

re-attach at the corner but at the bottom of the bowl so that at 

15°  BTDC, two eddies are formed in the curved part of the bowl. 

This finding suggests that for a given lip radius, swirl rate etc. 

there is a minimum value of flank angle, probably somewhere between 

the 50°  and 20°  values used here, that will allow a single main 

squish-induced toroidal vortex to initially form in the bowl and 

that a further decrease in flank ang]e will cause two such eddies 

to be created. 

With the exception of the two-eddy structure the flow 

is much the same as the 1.11 bowl predictions at 6°  BTDC and TDC 

(fig. 6.9b), with the formation of an additional squish-induced 

vortex in the mouth and the appearance of a weak recirculation 

zone towards the bottom of the bowl near the axis, which incidentally 

occurs earlier in the present case. The post-TDC behaviour also 

follows a similar pattern to that seen previously (note that no plots 

are available for 6°  ATDC) with the exception of the slight increase 

in swirl speed between 15°  and 30°  ATDC observed in the previous example. 
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Predictions for the 1.12 Bowl  

This bowl differs from the 1.11 and 1.2 configuration, 

firstly by having a 70°  flank-angle and secondly, a straight-sided 

lip with a sharp outer edge. 

At 30°  BTDC (fig. 6.10a) the flow shows identical trends 

and similar values for all quantities to those seen previously. 

By 15°  BTDC however, the flow into the bowl shows a small recirculation 

at the lip, a behaviour contrary to immediate intuition as the bowl 

flank is inclined less than, for example, the 1.11 bowl, whose flow 

had re-attached at this stage. The answer lies in the sharp edge 

of the lip as compared with the smooth curvature of the previous 

versions, which allowed the gas to flow smoothly along the side 

wall of the bowl. The structure is otherwise quite similar to the 

1.11 bowl with the initial formation of a single strong, clockwise- 

rotating primary vortex. Both the swirl and turbulence levels 

are slightly higher (5-10%) than those observed in the other 

configurations. 

By 6°  BTDC (fig. 6.10b) the now-familiar eddy has 

formed in the mouth of the bowl and the swirl shows the characteristic 

high maximum value approximately mid-way between the lip and axis. 

The turbulence however has a similar structure to 15°  BTDC, although 

with reduced levels. This contrasts with previous calculations 

which showed slightly increasing values before TDC and a maximum 

located near the lip. At TDC, high inward radial velocities are 

found near the cylinder head and the turbulence maximum has increased 

dramatically. The reason for this phenomena can possibly be 

explained in the following way: in the calculation with curved- 

lip bowls (1.11 and 1.2) the lip curvature acts in a similar 

fashion to a diffuser, thus, the squish flow leaving the clearance 
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space experiences a region of increasing area at the edge of 

the bowl and although the maximum squish velocity occurs at about 

5°  BTDC, the diffusion effect will be most pronounced at this 

stage as the clearance gap is small. The net effect of a curved 

lip on this aspect of the flow is to increase the effective bowl 

diameter with the associated reduction in squish velocity. On 

the other hand, no such diffusion occurs with a sharp-edged lip 

and the squish velocities are not attenuated. It should be 

remembered that the production of turbulence depends upon the 

magnitude of the velocity gradients and it is probable that these 

reach a maximum value somewhere between the time of maximum squish 

velocity and TDC. 

At 6°  ATDC (fig. 6.10c), much higher reverse squish 

velocities are seen at the lip than with previous bowl configurations; 

this also seems to be a feature common to sharp-edged lips as 

will be seen later in a similar configuration. The trends at 15°  

ATDC and 30°  ATDC (fig. 6.l0d) are much the same as those found 

previously, with virtually solid body rotation extending to half 

the bowl radius and a local turbulence maximum adjacent to the lip 

in the clearance space. 

Predictions for the 1.3 Bowl  

This open-chamber bowl could be classified as having 

a 90°  flank-angle, although to avoid excessive bowl depth while 

preserving the same compression ratio, the throat is of larger 

diameter than for the previous calculations. 
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At 30°  BTDC (fig. 6.11a), both the turbulence generated 

at the lip and the swirl velocities are lower than in the earlier 

case because of the reduced squish velocities that result from 

the increased bowl diameter, thus illustrating the merits of the 

re-entrant design. The swirl velocity contours also show a less 

localised structure with the maximum value extending to the 

cylinder wall, although the axial variation above the piston occurs 

as before. 

By 15°  BTDC, the primary vortex has appeared in the bowl 

cavity and a small eddy has formed just inside adjacent to the lip, 

where the flow has separated and reattached. Although the swirl 

maximum is now more localised the values are considerably lower 

than in any of the previous calculations. 

At 6°  BTDC and TDC (fig. 6.11b), the structures are 

quite similar to the 1.12 (70°  flank-angle, sharp-edged lip) 

predictions and show the same trend of decreasing turbulence 

immediately prior to TDC followed by a substantial increase at TDC. 

The post-TDC behaviour (figs. 6.11c and 6.11d) is also 

very similar to the 1.12 bowl in all respects, including the occurrence 

of high reverse-squish velocities. Both the swirl and turbulence 

levels remain lower than those of previous calculations. 

Predictions for the 1.15 Bowl  

This configuration differs from those analysed previously 

in a number of geometry details, already described at the start 

of this section, and a lower BDC swirl ratio of 2.02. 
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At 30°  BTDC (fig. 6.12a) the characteristic squish-generated 

structure is observed, with localised maxima of both swirl and 

turbulence levels near the lip. By 15°  BTDC, two eddies have formed 

in the bowl, but unlike previous calculations, they are of approxi- 

mately similar size. The mechanism that has produced this flow 

pattern should not be confused with the two-eddy structure found 

in the 1.2 bowl (fig. 6.9a), the latter being caused by the flow 

detaching from the steep wall, but rather by the same mechanism 

that produced the lip-eddy of the same rotational sense in all the 

other bowls immediately prior to TDC. The reason for this is probably • 

the reduced centrifugal forces opposing the squish, that are 

associated with the lower swirl ratio, allow the formation 

of a stronger counter-clockwise rotating vortex (as evidenced in the 

no-swirl calculations of appendix 4) than would be obtained with 

a higher initial swirl. 

At 6°  BTDC and TDC the counter-clockwise rotating vortex 

dominates, with the other pushed toward the bottom of the bowl. The 

swirl and turbulence fields show similar trends to previous calculations. 

The dominant vortex disappears quickly after TDC and by 6°  

ATDC only a weak clockwise recirculation is observed in the bowl. 

Characteristic of sharp-edged lips, the reverse-squish velocities 

are high. The subsequent behaviour is otherwise much the same as 

the post-TDC performance of previous predictions. 

Assessment of Curved Bowl Predictions  

These calculations demonstrate that the flow structure 

in axisymmetric representations of piston-bowl chambers typical of 



- 211 - 

current design can be analysed using the method developed in this 

study. The results suggest that apparently minor variations in 

the geometry and/or operating condition can produce dramatic 

changes in the behaviour of the flow. A few general observations 

can be made concerning these calculations; it should not be assumed 

that these observations will apply to conditions far removed from 

those used here, for example, very high or low initial swirl levels. 

(1) It is usual for the squish to provoke a clockwise-

rotating toroidal vortex by 15°  BTDC and a second 

eddy of counter-clockwise rotation immediately 

before TDC, although the flank-angle, lip shape and 

swirl ratio can alter the proportions and timing of 

each. 

(2) A reverse-squish phenomena is observed and is 

found to be more intense in bowls with straight-sided 

rather than curved lips. 

(3) The squish motion prior to TDC transports swirl 

momentum into the bowl, increasing the swirl velocities 

in the latter, which are found to reach a maximum at, 

or just before TDC. Also observed are an axial 

variation in swirl velocity, with higher values nearer 

the cylinder head, and a localised maximum between 

the lip and cylinder axis. 

(4) After TDC, the swirl momentum is transported back into 

the clearance space and lower swirl velocities are then 

found above the piston. Solid body rotation, without 

appreciable axial variation, is then observed in a 

substantial portion of the bowl. 
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(5) The squish process generates considerable turbulence 

near the lip prior to TDC and this is subsequently 

transported into the bowl. Curved and straight-

sided lips exhibit a different behaviour, turbulence 

levels in the former increasing steadily before TDC, 

whilst in the latter, a decay is observed immediately 

before TDC followed by an increase in localised 

lip-turbulence at TDC. 

(6) All of the configurations analysed indicate that a 

localised turbulence maximum is created just above 

the piston by the reverse-squish and the predictions 

of section 5.4 show that this is responsible for 

increasing the heat transfer rates in this region. 

6.4 Closure  

In this chapter, flows in various piston bowl configurations 

and conditions have been examined. Analysis of the flow in cylindrical 

cavity pistons agrees qualitatively with the experimentally observed 

phenomena of squish and reverse squish and the finding that swirl 

has a strong effect on the TDC flow. 

The calculations in curved bowls show that the flow structure 

prior to TDC is extremely complicated and that minor geometry changes 

can produce substantial changes to the flow as can swirl level and 

possibly other parameters. Nevertheless, a number of features of 

commonality in the different flow patterns have been identified. 
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Quantitative comparison with experimental data has not yet been 

possible, but the behaviour of the flow seems plausible and does 

agree at a qualitative level with a number of experimental 

investigations. 
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CHAPTER 7  

SUMMARY AND CONCLUSIONS  

7.1 Summary of Achievements and Findings  

A computational procedure has been developed to predict 

the gas motion in diesel engine cylinders equipped with piston bowls 

typical of current design. This has been achieved by formulating 

the differential conservation equations governing the flow in a 

general curvilinear-orthogonal axisymmetric co-ordinate frame that 

allows the solution domain to be always bounded by the cylinder head, 

cylinder wall and piston surfaces and solving numerically algebraic 

finite-difference approximations to the transformed equations. Within 

this framework, the following features have been included: a contemporary 

two-equation turbulence model, swirl, and a fixed orifice or a moving 

poppet valve through which air may be inhaled and expelled. 

The accuracy of alternative finite-difference schemes has 

been examined and the effects of grid size and time step determined 

by comparing numerical and analytical solutions for the case of one- 

dimensional compression-expansion. A similar, but more limited exercise 

has been carried out for a two-dimensional turbulent flow in a simple 

cylindrical-cavity piston-bowl configuration. A stability analysis 

has also been undertaken for time-centred differencing of the one- 

dimensional continuity equation which has indicated the nature and 

effect of time-step on stability. The one-dimensional analysis 

shows that the time-centred scheme produces a more accurate solution 

than the fully-implicit formulation for the velocity although the 

level of error for both schemes is low. 	In two-dimensional calculations, 

differences between the schemes are negligible and implicit differencing 
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is therefore preferred on grounds of stability. The time-centred 

scheme may be used if small (1°) time-steps can be tolerated, but 

larger steps invariably result in an oscillatory solution. A scheme 

for adjusting the under-relaxation factors, used to control convergence 

and stability, has been proposed and shown to be superior to the 

usual practice of specifying fixed values of these parameters. 

The above work has resulted in a numerical scheme that, 

at least for all calculations described in this thesis and others 

not included, remains stable and convergent, however, it must also 

be concluded that for complex recirculating turbulent flows, solutions 

independent of the effects of grid size and time-step cannot be 

obtained for economical specifications of these quantities. 

Comparison between the calculations and six experiments 

have been described which include: detailed profiles of mean 

and turbulent velocities in a non-compressing engine both with and 

without swirl and a piston bowl, single point mean and turbulent 

velocities in a compressing engine with a moving poppet valve in 

both bowl-in-head and flat cylinder head configurations and 

instantaneous heat fluxes at four positions on the cylinder-head 

of a high-swirl cavity-piston compressing engine. These results 

show that the calculations are generally in reasonable agreement 

with the measurements. In all cases, trends have been correctly 

predicted although a detailed examination has, on occasions, 

revealed substantial numerical differences. Various reasons have 

been suggested to account for the observed discrepancies in 

chapter 5, which include numerical smearing, certain assumptions 

used in the turbulence model, inadequate specification of inlet boundary 

conditions and errors in the measurements and subsequent data-processing. 
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In chapter 6, the flow structure around TDC has been 

examined for both simple cylindrical-cavity piston-bowls and five 

different re-entrant bowl configurations. Results for the former 

show that swirl strongly effects the flow structure, with higher 

initial swirl rates producing a progressively more complex flow 

pattern at TDC. In the case of the latter, variations in the bowl 

flank-angle, lip shape and initial swirl ratio resulted in substantial 

changes in the flow structure. With a shallow-angle piston bowl 

side-wall, a single clockwise-rotating toroidal vortex was formed 

initially, but with a steeper angle the flow detached at the edge 

of the lip, resulting in a two eddy structure within the bowl. The 

effects of both curved and sharp-edged lips were also examined. 

Here, differences were observed both before and after TDC, with 

the gas flowing smoothly around the curved lip but detaching from the 

sharp lip to produce an additional small eddy prior to TDC and a 

stronger reverse-squish flow after TDC. It is hoped that these or 

similar calculations will provide guidance for future experimental 

work. 

7.2 Improvements and Extensions  

Improvements  

(i) Reduction of Storage  

Various arguments can be marshalled against wastage 

of computer storage, e.g. cost, portability to smaller machines 

etc. and it must generally be regarded as undesirable. The current 

implementation of the computer code uses two-dimensional storage 

with direct-addressing of array elements, i.e. typically, a variable 4i,j 
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is addressed as PHI(I,J) where i(I) and j(J) refer to a particular 

location in the field at the co-ordinates z(I), r(J). Although 

conceptually very simple, this system is not particularly efficient 

when used with a variable number of grid lines in either or both 

of the co-ordinate directions. In the context of the present 

application, storage is wasted in the region between the side wall 

of the piston bowl and the cylinder wall. Typically, this amounts 

to 200 array locations per variable and, with a total of 45 two-

dimensional arrays, the wasted storage is 72 k bytes. There are 

two relatively simple ways of eliminating this unused space, both 

using one-dimensional storage for all variables and indirect-addressing-

of array elements as described below. 

The first and simpler of the two methods, addresses a 

two-dimensional array element cpi,j  in a one-dimensional fashion 

as PHI(IS(J)+I); this process is illustrated in fig. 7.1 for a small 

but representative grid (the randomly-distributed number 1 to 18 shown 

within the grid should be ignored for the present). 	In fig. 7.1, the 

main point to note is that one-dimensional storage allows the use of 

'J' lines of variable length, thus, the redundant storage contained 

in the J=3 and J=4 lines in the upper figure has been eliminated. 

The method of computing the address, given by IS(J)+I, is very similar 

to that undertaken by the compiler for a two-dimensional array, the 

only difference being that IS(J) is a constant in the latter case 

and equal to one of the dimensions of the array. Accessing the 

surrounding grid cells at points N, S, E and W is achieved by inserting 

the appropriate I and J into the address formula; typically for a 

North cell ((pi,j+1),  this is PHI(IS(J+1)+I). The values contained 

in the array IS can be regarded as the start addresses of each J line 

and the numerical values for this example are shown in fig. 7.1. 
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The second method of indirect-addressing is more complicated 

but offers greater flexibility as to the positioning of grid cells 

within the solution domain and is ideally suited to handling geometries 

with many discontinuities. In this case, the concept of I, J 

addressing is dispensed with and each grid cell is allocated a 

unique integer number (K), as shown within the grid of fig. 7.1 

(in this example, 1 < K < 18). The ordering of these numbers is un-

important. Address arrays are then defined, LN(K), LS(K), LE(K) 

and LW(K) as containing the cell number to the North, South, East 

and West of cell 'K',e.g. for the grid of fig. 7.1, LN(13) = 11 

and LE(5) = 17. The variables contained in the surrounding cells 

are then accessed as PHI(LN(K)), PHI(LS(K)) etc. An additional 8 

integer arrays are also needed to access the surrounding velocity 

components (it will be recalled that these are located at the cell 

boundaries) and to indicate when a cell boundary is also a physical 

boundary of the domain; this is done in an identical fashion to the 

scalar cell addressing. The differencing schemes and solution method 

already described in this thesis could be used without modification, 

and if this indirect-addressing technique were used in conjunction 

with the grid-matching method developed in section 5.3 of appendix 1 

for generating curvilinear-orthogonal grids in discontinuous regions 

of complex shape,it would provide a powerful method for handling, for 

example, the prechamber engine configuration described by Gosman 

et al (1979) and summarised in chapter 2 where conventional direct-

addressing was used. 

In addition to the storage savings that would be obtained 

from either of the indirect-addressing methods outlined, it may be 
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possible to further reduce the storage per variable by using lower 

precision for storage of certain variables. At present,double precision 

on an IBM machine is used (8 bytes = 64 bits per variable), giving 

accuracy to approximately 14 significant figures. Attempts to use 

single precision throughout resulted in roundoff errors sufficient 

to prevent convergence. The use of selective double precision 

may however prove fruitful; for example, it was found that if 

double precision was used for all variables involved in the calculation 

of the pressure field (recall it is the small spatial variations of 

pressure that drive the velocities obtained from the momentum equations) 

that a much better solution was obtained. Thus, it may not be 

possible to halve the storage, but some savings can almost certainly 

be made. These comments do not however apply to all computers; in 

particular CDC machines use a 60 bit word length for single precision 

(giving identical accuracy to IBM double precision) which cannot 

easily be reduced. 

(ii) Reduction of cpu Time  

Methods for reducing the cpu time are not so obvious, 

as the present version of the computer code has already been optimised 

to improve its speed. One idea, used by Butler et al (1978), is to 

delete grid lines in the contracting portion of the grid as the 

piston approaches TDC and to subsequently reinsert them as the piston 

descends and the grid expands. This is not a particularly difficult 

task, the main criterion being that rezoning of the control volumes 

must be conservative, that is, there should be no sources or sinks 
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of any of the conserved properties artifically introduced as a 

consequence of the rezone. One unfortunate effect of rezoning 

however would be to diffuse properties in the axial direction as 

a result of averaging, thus a certain amount of numerical smearing 

would occur. It is likely that the spatially integrated squish 

velocity (integrated along the line AA in fig. 2.11) would be the 

same between the conventional and rezoned solutions, as the 

indications are this quantity depends solely on satisfaction of the 

continuity equation (with the possible exception of extremely high-

speed engines (> 10,000 rev/min)) but the axial gradients of squish 

velocity would be reduced from the effects of both rezone smearing 

and the reduced number of grid lines. It was seen in chapter 4 that 

coarser grids tend to reduce the velocity gradients and hence the 

turbulence levels. Deletion of grid lines would therefore need careful 

testing to determine the effect on the solution of the turbulence 

equations. The required programming effort is small however and is 

certainly worthy of further investigation. 

Further improvements at reducing cpu time can only come 

about by using a more efficient algorithm for linking the momentum 

and continuity equations, probably of the non-iterative variety, and/or 

by running on one of the new-generation array processors such as 

the CRAY 1, for which this type of program is ideally suited. 

(iii) Non-orthogonal Co-ordinates  

As indicated in appendix 1, orthogonal grids may not be 

suited to some geometries, specifically, those with non-orthogonal 

corners or highly concave regions, the resulting mesh being non- 
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orthogonal or sparse in these regions. A non-orthogonal co-ordinate 

system would provide much greater freedom in the choice of grid 

density and positioning although the computational time would 

invariably increase as a result of the extra terms appearing in the 

governing equations that express the effects of departures from 

orthogonality. An alternative to using a fully non-orthogonal system 

throughout would be to use a combination of rectilinear, orthogonal-

curvilinear and non-orthogonal co-ordinate frames with each grid 

cell in the flow field flagged to indicate which system it belongs 

to. Thus, the computer could detect quickly which co-ordinate 

system has been assigned to each grid cell and only the relevant terms 

would be evaluated. 

(iv) Local Grid Refinement and Adapative Grids  

It was mentioned in chapter 4 that research into more 

accurate methods of differencing the differential equations has 

not yet provided a scheme that fulfills the two important criteria 

of diagonal dominance and conservation. An alternative approach 

to improving the accuracy of finite-difference calculations is 

suggested below. 

The proposed method relies on the fact that errors 

generally diminish with reduction in grid size, but that fine 

grids are usually only required in certain regions of the flow 

field. Within the constraint of the type of grid described so far, 

this is not possible, as refinement in one region of the field 
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invariably produces unwanted and usually unnecessary refinement 

elsewhere because in i, j space the grid is topologically rectangular 

i.e. each mesh point is always connected to its four nearest 

neighbours. However, if it were possible to refine a grid locally, 

that is, to subdivide a single grid cell into (say) a 4 x 4 mesh, 

then the advantages of a fine mesh could be obtained without 

incurring the associated penalties throughout the field. 

As an illustration of where local grid refinement should 

be useful Case 1 of chapter 5 will be used. It was noted that the 

intake jet crossed the rectilinear grid at an angle of 450 ± 20°  and 

the calculated expansion of the jet was greater than that measured, 

which was attributed in part to false-diffusion errors, and the 

turbulence energy was consequently underpredicted. Figs. 7.2a 

and 7.2b show respectively the flow structure at 90°  during intake 

for case 1 (computed with the conventional grid arrangement) and 

a proposed improved computational grid that has been locally refined 

along the lines discussed above. Here it can be seen that the grid 

has been refined in regions where false diffusion errors are 

expected to be greatest, special attention being given to the intake 

jet. 

It is often not known 'a priori how the calculated flow 

structure will develop as the solution proceeds, thus, the 

refined grids may be initially misplaced, or alternatively, required 

in different regions of the flow at different times as the structure 

changes. A logical extension of this concept would be to allow 

the additional grids available for refinement to be disposed according 

to the nature of the solution itself, such that regions of refinement 

would be determined from some specified criteria that depends upon 

the solution. This could take the form of a weighting function, 

evaluated at each grid cell in the field, with refinement 
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applied in the regions where the value of the weights is 

greatest. 	For example to procure refinement in regions 

of maximum false diffusion, 	the weighting function might 

take the form: I mass flux x sin 201 where the mass flux is evaluated 

at the cell face and a is the local orientation of the flow to 

the mesh. Other weighting criteria could also be evolved: for example, 

in a combustion calculation, the refinement criterion could be 

based upon gradients of temperature or concentration such that the 

position of the flame front could be located and the grid there 

subsequently refined to improve definition. More generally, this 

method could be used whenever events occur on length scales much 

smaller than the scale of the solution domain. 

As yet nothing has been said about detailed implementation 

of the foregoing ideas and this is by no means a trivial task. Although 

much of the work already described in this thesis, that is, the 

differential equations, finite-difference approximations etc. could 

be used with little or no change, with the exception of the line-

by-line solution procedure which would require a more general Gaussian-

elimination as the coefficient matrix for a single line that employs 

grid refinement can no longer be forced into tri-diagonal form, much 

careful thought is needed before a computer code could be assembled. 

Work by the author has indicated that a viable method, which makes 

extensive use of a more general indirect-addressing technique 

to that previously described may be used successfully, although 

the penalty for such flexibility is a vast increase in the quantity 

of integer storage (of the order 80 additional arrays, dimensioned 

to the total number of grid cells in the field) used for the 

addressing if conventional high-level language programming methods 

used. However by introducing machine-dependent operations into 

the program, these overheads can be reduced to manageable proportions. 
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For example, on a CDC machine, which uses are 60 bit word for the 

storage of each integer, by introducing two simple and extremely 

fast operations, 5 integers (whose value must be less than 212  -1=4095) 

can be easily packed into a single word, thereby reducing the integer 

storage requirement by a factor of 5. 

This concept is certainly worth persuing, at least in two 

dimensions, to determine whether or not the hoped-for improvements 

would be realised in practice. 

Extensions  

(i) Three-dimensionality  

The differential equations, differencing practices and 

many features of the solution method described in chapters 3 and 4 

are readily extendable to three dimensions. However, this is not 

a step to be taken lightly in engine calculations for two reasons: 

firstly, because of the increases in both storage and cpu time, the 

cost of operating such a code will be substantially higher than 

the 2-d version and secondly, if a 3-d computer code is to be useful, 

it must embody features of practical interest, such as piston bowls 

or•valves offset from the cylinder axis. In view of the grid-

dependence of the solution found for the two-dimensional calculations 

in chapter 4, it is improbable however that quantitative results 

could be relied upon in three dimensions with the differencing 

practices currently used. Nevertheless, it is likely that useful 

qualitative information could be derived from such a program. 
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To illustrate how the method may be extended to cater for 

practical 3-d configurations three examples are described below. It 

should be noted that the methods suggested for the following engine 

configurations use no new concepts, such as non-orthogonal co-ordinate 

systems, but only different applications of the ideas already 

developed in this thesis. 

Example 1 - Flat cylinder head, no valves, offset piston bowl  

of complex shape  

Such a geometry is shown in fig. 7.3. As with the piston-

bowl calculations already described, the solution domain can be 

divided into two components, namely, a translating region in the bowl 

and an expanding/contracting region between the piston surface and 

cylinder head. If the piston bowl is circular (although this is not 

a constraint on the method) then a curvilinear orthogonal grid can 

be employed in the r-z plane within the bowl in the manner used 

for the calculations of chapter 6. Outside the bowl however, the 

non-coincidence of the bowl and cylinder axes requires a further 

curvilinear-orthogonal grid to be generated in the r-O plane. In 

this case, an analytic transformation exists for a pair o.f non-

concentric circles (Kober, 1957) although other transformations 

may also be used. An example of such a grid is shown in fig. 7.3*. The 

resulting grid therefore consists of two general curvilinear-orthogonal 

regions, the first in the piston bowl (r-z plane) and the second in 

*This grid was produced using the method of Watford (1978). 
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the cylinder (r-e plane). Thus, expansion and contraction in the 

rectilinear (r-z) plane of the co-ordinate frame between the piston 

surface and cylinder head is identical to that already used whilst 

the piston bowl portion similarly translates as before. 

Example 2 - Flat cylinder head and piston surfaces, single offset 

protruding poppet valve  

This configuration is shown in fig. 7.4. The grid required 

for this configuration is essentially the same as that suggested 

for the expanding/contracting region in example 1, but with the valve 

protruding into the cylinder in an identical fashion to that described 

in chapters 4 and 5 used for simulating the experiments of Witze (1976c). 

The boundary conditions, which would almost certainly have to come 

from experiment for any given port configuration (although spatially 

resolved steady-state measurements of the 3 velocity components 

at different valve lifts and pressure-differentials may be adequate), 

would be provided at the surface of the cylindrical region extending 

from the periphery of the valve to the cylinder head, as shown in 

fig. 7.4. As with the moving-valve calculations of chapter 5, a 

constant number of grid lines could be retained between the cylinder 

head and valve when the latter is open to improve resolution, these 

contracting to a line in the plane of the cylinder head and becoming 

inoperative when the valve is closed. 
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Example 3 - Uniflow scavenged two-stroke; inlet-piston-controlled  

porting, exhaust-offset poppet valve in cylinder head, 

flat cylinder head and piston surfaces  

This example is intended to illustrate how an engine with 

fairly complicated porting can be analysed using a combination of 

techniques. The geometry and proposed grid are shown in fig. 7.5. 

The cylinder contains a port belt used for intake that is uncovered 

before the piston reaches BDC and remains open until closed by the 

piston during compression. At BDC, the bottom of the port belt 

and the piston surface are co-incident. In the cylinder head, 

a poppet valve is used for exhaust which may or may not be offset 

from the cylinder axis. In fig. 7.5(a) the piston is at BDC 

with the exhaust valve still partially open and the port belt 

fully exposed. The grid line at C remains fixed to the top of the 

port belt whilst the latter is open and a constant number of grid 

lines are used between A and B and between C and D. At the start 

of compression, fig. 7.5(b), the exhaust valve is closed and the 

grid lines between A and B are co-incident at the cylinder head surface 

whilst in the port belt, the grid lines between C and D are compressing. 

As the port closes, all grid lines between C and D become co-incident 

at the piston surface as is fig. 7.5(c). During expansion, as the 

valve and port open, the reverse procedure is adopted and the grid 

lines between A-B and C-D reappear. 

(ii) Fuel Sprays  

Numerous methods have been developed to analyse fuel 

sprays, ranging from simple algebraic formulae that relate the 
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distance travelled by the spray tip to certain characteristics of 

the injection system and time (see e.g. Hay and Jones (1972) for 

a survey of 12 such correlations) to calculations of the heat and 

mass transfer and trajectory of a single droplet (Borman and Johnson, 

1962) and more sophisticated models which take account of the spray 

growth and heat and mass transfer within the mixing region (Adler 

and Lyn, 1971). Unfortunately, the vast majority of these methods 

cannot easily be incorporated into the framework of the multi-

dimensional calculation method already described. 

An alternative approach, which in principle is capable 

of including most of the important phenomena that occur in the two-

phase fuel-air mixing process, is an extension of single-droplet 

calculation methods to a multi-droplet calculation (Gosman and Johns, 

1980). In this method, the spray is represented by a statistical 

sample of discrete droplet 'parcels' that eminate from the zone of 

atomisation with specified initial sizes, velocities and temperatures; 

these are subsequently 'tracked' in a Lagrangian fashion as they 

traverse through, and heat up and vaporise in the gas flow, by 

solving appropriate conservation equations of mass, momentum and 

energy. Each parcel consists of a number of identical, non-interacting 

fuel drops and the behaviour of the entire parcel is characterised 

by that of a single member. Full two-way interactions between the 

gas and liquid phases are allowed for in the following way: as 

the droplets traverse the flow field, the gas temperature, fuel 

vapour concentration and velocities, used in the solution of ordinary 

differential equations for the droplet behaviour, are obtained from 

the gas phase solution at the grid cell in which the droplet parcel 



- 229 - 

currently resides; at the same time, fields of 'sources' of mass, 

momentum and energy, that expresses the interaction between the 

phases, are assembled and subsequently used explicitly in the gas 

phase calculation. 

Results for a two-dimensional (pintle-type nozzle) hollow- 

cone spray calculation using this method show that strong interactions 

occur between the phases, the greatest effects being confined to 

regions around the injector. To illustrate this point, figs. 7.6 

and 7.7 show the predicted flow and concentration fields and the 

fuel spray dispersion at TDC (taken from Gosman and Johns, 1980). 

These figures represent respectively, a solution in which the effect 

of the droplets on the gas has been ignored and full two-way interactions. 

It is however concluded that considerable further work is needed 

in such areas as the behaviour of multi-component fuel droplets at 

the thermodynamic critical point and the specification of reliable 

initial conditions before the model can be deemed truly predictive. 

(iii) Ignition  

Modelling of the ignition process is a prerequisite to 

modelling combustion and is dependent upon whether the fuel is spark 

or compression ignited. The former case is easier to analyse in 

that the location and timing of the spark are known. In the absence 

of an ignition model, the practice adopted by Ahmadi-Befrui et al 

(1980) is to specify a burning rate over a few degrees of crank-

angle for the fuel in the grid cell at the •spark gap position; the 

resulting temperature increase and depletion of the fuel subsequently 
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initiates combustion in the surrounding grid cells and throughout 

the field. In this context, the use of local grid refinement, as 

previously described, should prove to be a worthwhile method of 

resolving the small length scale of the initial flame. 

Compression-induced ignition is more difficult to analyse 

and model. It is known from high-speed photography (Shiozaki et 

al, 1980) that combustion is often initiated simultaneously in 

different regions of the cylinder and a model that claims to be 

realistic must therefore allow for this. The ignition delay period 

in diesel engines is conventionally thought to consist of a physical 

delay, during which fuel evaporates and mixes with the surrounding 

air, and a chemical delay, in which time the fuel undergoes complex 

chemical reactions; analysis is complicated by the fact that the 

two occur simultaneously. Very little is known about the detailed 

reactions leading to autoignition although Garner et al (1961) 

found that for four different hydrocarbon fuels, peroxides and 

aldehydes were formed during the delay period and reached their peak 

concentration at the start of combustion. They also found that for 

high cetane number fuels the peak concentration of these intermediate 

compounds occurred earlier than with fuels of low cetane number. 

Henein and Bolt (1969) and others have investigated the effect of 

cetane number (CN) on the duration of the delay period and found 

that petrol (CN = 18) has a longer ignition delay than diesel 

fuel (CN = 57.5). Similar observations have been reported by 

Stringer et al (1971) for the autoignition of several fuels in a 

continuous flow system. The preignition reactions may be considered 

in two stages: in the first, slow reactions occur and intermediate 

compounds are formed; when these have reached some critical 
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concentration, fast reactions are initiated, leading to autoignition 

and combustion. Furthermore, the rate of the physical processes 

such as evaporation increase with fuel volatility, thus, if physical 

processes determined the duration of the delay period, the ignition 

delay for petrol would be shorter than that for diesel. As this 

is not the case, it must be concluded that the delay is chemically-

controlled (Henein, 1976). 

Attempts to calculate the duration of the ignition delay 

are usually based upon an Arrhenius-type relationship. The starting 

point is to assume that the formation rate of intermediate 

compounds is governed by an expression of the form: 

dd[IC]  - k [F]  n [02]  m (7.1) 

where k is the reaction velocity, [IC], [F] and [02] are the 

concentrations of the intermediate compounds, fuel and oxygen, 

and n and m are the order of the reaction with respect to the fuel 

and oxygen. The reaction velocity is usually expressed as: 

-Ea/RoT 	

(7.2) k = Cle  

where C1  = constant,  Ea  is the global activation energy, Ro  is the 

universal gas constant and T is the gas temperature. If it is further 

assumed that the fuel and air will only ignite within narrow limits 

of stoichometry, then the ratio of fuel and oxygen concentrations 

is fixed and equation 7.1 can be written as: 

dptC]  = C2e 
-Ea/RoT 

(7.3) 

The conventional approach to evaluating the ignition delay is to 

simply replace equation (7.3) by an expression containing an empirical 
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constant (A) which must be determined experimentally and depends 

upon the shape of the combustion chamber, fuel-injection characteristics 

etc. typically: 

Ea/RoT 

ignition delay = Ae 	 (7.4) 

The above method is inadequate for multi-dimensional 

calculations for two reasons: firstly, equation 7.4 requires a 

constant that can only be obtained from engine tests, and secondly, 

it provides no information as to where ignition occurs in the 

combustion chamber. An alternative approach that is more compatible 

with multi-dimensional models is outlined below. 

A conservation equation for the formation of the 

intermediate compounds can be written as: 

TE(AX) + x ( AviX)  - ax(r 
a x) = sX  (7.5) 

Here, x is the mass fraction of intermediate compounds and sX  

is the net generation-destruction rate of x (to preserve clarity, 

this equation has not been written in general curvilinear-orthogonal 

co-ordinates). The generation rate of x (sX) is evaluated from 

equations such as 7.1 and 7.2. Equation 7.5 is solved only after 

the start of injection and the occurrence of ignition would subsequently 

be detected by scanning the field of X's to determine if the concentration 

of intermediate compounds is greater than some specified value, 

Xig, that is, if 

X(xi, t) > Xig  

then combustion would start at that position in the combustion 

chamber. It would be expected that once combustion had started in 
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a particular grid cell that it would spread quickly throughout 

the remainder of the field due to the exponential relationship with 

temperature. 

Such a model incorporates both the chemical and physical 

components of the delay period. The quantities C1  in equation 

7.2 and Xig  must first be determined but these should be constant 

for a particular fuel. 

(iv) Combustion  

The development of engine combustion models has, in the 

past, been hampered by a lack of temporally and spatially resolved 

information about the flow, temperature and concentration fields. 

As a consequence, numerous methods have evolved to circumvent these 

problems (see e.g. Blizzard and Keck (1974) and Grigg and Syed (1970) 

who address the problems of homogeneous charge petrol and diesel 

spray combustion respectively). 

Multi-dimensional calculation methods offer an opportunity 

to construct combustion models that may be solved simultaneously 

with the flow field.At the present, there appear to be two schools 

of thought as to the way this should be done, both apparently giving 

plausible results. 	One method used (Ahmadi-Befuri et al(1980)) 

is to assume that the combustion rate is governed by the rate-of-mixing 

of the fuel and oxygen such that the former is proportional to the 

dissipation time-scale (k/E) (Magnussen and Hjertager (1976)). The 

second approach assumes the chemical kinetics to be the rate-

controlling process. Both methods solve one or more differential 
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equations similar to 7.5, the differences being in the specification 

of the source term. 

It is probable that both mechanisms are simultaneously 

operative and each is rate-controlling at different stages in 

the overall process. It is also likely that for the hetrogeneous 

combustion in diesel engines, the turbulent mixing model is more 

appropriate. At the present however, it is too early to make a 

reasonable assessment of the two alternative approaches. 
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NOMENCLATURE  

A 	coefficient of finite difference equation 

Ao 	TDC clearance 

Al 	amplitude of oscillation 

a 	area 

b(ZH ZH)/ZH 

C1,C2,Cu  turbulence model constants 

Cp 	specific heat at constant pressure 

D 	av/Dp 

E 	turbulence model constant or error 

Ea 	global activation energy 

F 	cell face flux 

f 	spatial weighting factor or under-relaxation factor 

Gt 	generation rate of turbulence energy 

h 	stagnation enthalpy 

k 	turbulent kinetic energy 

t 	metric coefficient or length scale 

Ma 	Mach number 

M 	mass flow rate 

N 	normalising quantity 

N1..N4 	number of grid lines 

P 	laminar sublayer resistance 

Pe 	Peclet number 

p 	pressure 

Q 	( ap/W)T  

q 	heat flux 

R 	momentum equation source term in finite-difference 

expression with pressure gradient contribution subtracted, 

residual or gas constant 
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R0 	cylinder radius 

Re 	Reynolds number 

✓ radial co-ordinate or radius of curvature 

S 	source term in finite difference equation 

SI,SE 	implicit and explicit contributions to S 

s 	source term in differential equation or distance 

su 	source term in equation 3.35 

T 	temperature 

t 	time 

t* 	non-dimensional time 

0 	period of oscillation 

V 	volume 

✓ velocity 

va 	speed of sound 

vi 	instantaneous piston velocity 

vm 	mean piston velocity 

vn 	normal velocity on ensemble average velocity 

v0 	reference velocity 

vT 	friction velocity 

w a vector quantity 

X 	displacement 

x 	Cartesian co-ordinate 

y 	normal distance from boundary 

axial co-ordinate 
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Greek Symbols  

a 	spatial weighting function 

angle between cl  co-ordinate direction and r = 0 

axis or under-relaxation factor adjustment parameter 

I' 	turbulent diffusivity 

ratio of specific heats 

V 	divergence operator 

increment 

dissipation rate of turbulence energy 

curvilinear orthogonal co-ordinate 

temporal weighting factor 

6 	circumferential co-ordinate or crank angle 

turbulence model constant or temporal weighting factor 

A 	thermal conductivity or Taylor macro length-scale 

dynamic viscosity 

kinematic viscosity 

dimensionless axial co-ordinate 

p 	density 

summation 

a 	Prandtl or Schmidt number 

T 	 stress 

T
W 
	wall shear stress 

a dependent variable 

4)n 	
ensemble averaged value 

 time-averaged value - n  

turbulent fluctuation of 

X 	mass fraction 
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Subscripts  

A 	aperture 

b 	boundary 

C 	correct 

c 	any of NSEW, nsew etc. 

d 	downstream 

E 	explicit 

eff 	effective 

F 	field 

f 	fluid 

g 	grid 

H 	piston 

h 	stagnation enthalpy 

I 	initial or implicit 

i,j,k, k co-ordinate directions 

ig 	ignition 

t 	laminar 

k 	turbulence energy 

max 	maximum 

min 	minimum 

o 	cylinder head or reference 

P,N,S,E,W 
points-of-the-compass notation for grid points 

n,s,e,w 

p' 	pressure correction 

ref 	reference 

t 	turbulent or time 

u 	upstream 
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the i'th component of velocity 

wa l l 

turbulence energy dissipation rate 

co-ordinate directions 
1,2,3 

pertaining to 

(underbar) vector quantity 

Superscripts  

i 	iteration 

m 	time step 

n new time-level 

o old time-level 

instantaneous 

(overbar) ensemble averaged 

fluctuating, (ti,q,t) co-ordinate system, 

local correction or modified source term 

overall correction 

+ dimensionless 

relative to the co-ordinate frame 

* prevailing 

vi  

w 

s 

** 	rms turbulent fluctuation 
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ABSTRACT  

A method is described for producing curvilinear-orthogonal 

grids suitable for use in numerical calculations of fluid mechanics 

problems, based on the finite-difference solution of a set of Laplace 

equations for the physical co-ordinates of the grid. Also described 

is a technique for treating complex configurations with discontinuous 

boundaries, involving decomposition into subregions, generation of 

independent grids for each and then merging into a final, continuous 

grid for the whole region. The capabilities of the method are 

illustrated by examples of grids generated for design calculations 

of flows in reciprocating engines. 
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1. Introduction  

Information about the flow and temperature fields in the complex 

geometrical configurations found in heat exchangers, nuclear fuel 

assemblies, gas-turbine and diesel-engine combustion chambers, diffusers, 

furnaces etc. is of major interest to engineers and designers. 

Over the past two decades, numerous computer-based prediction methods 

for such problems have been in the course of development, based on 

the numerical solution of the governing differential equations of 

motion and convective transport. However, perhaps more by accident 

than design, these methods have for the most part been developed 

thus far within the restrictive framework of computing meshes 

conforming to simple-orthogonal co-ordinate frames such as the 

Cartesian and cylindrical-polar systems. As a consequence, the utility 

of these procedures has been restricted to problems having boundaries 

which conform to these systems, i.e. to rectangles and circles or sectors 

thereof whereas few practical configurations, including those just 

cited, are of this form. The main drawbacks in applying methods 

based on the simple co-ordinate frames to such configurations are 

inefficient use of grid mesh points and difficulties in resolving 

wall boundary layers. 

The possibility has long been recognised of formulating 

numerical solution methods in the context of general curvilinear- 

orthogonal co-ordinates (see, e.g. Ref.[1]), thus allowing a much 

greater degree of flexibility and virtually eliminating the 

problems just mentioned, The present authors and their colleagues 

have pursued this approach in connection with a variety of 

problems, including Diesel engine air flow analysis [2], 

tube heat exchanger performance [3] 	and analysis of flow in non-circular 

ducts [4] and are of the view that it can endow the finite-difference 
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technique with very nearly the same geometrical flexibility as the 

more recent finite element method, at perhaps smaller cost. 

One of the arguments often marshalled against the use of 

curvilinear-orthogonal computing grids is that they are difficult to 

generate. The purpose of the present report is to demonstrate that 

this is not the case: in particular, it describes a simple method 

for producing curvilinear-orthogonal meshes for arbitrary simply-

connected regions as well as an extension to this which allows 

more complex, discontinuous regions to be treated. Also presented 

are techniques to compute certain geometrical properties of the mesh 

that are typically needed for the finite-difference fluid-mechanics 

calculations. 

2. Contents 

In the remainder of this report, section 3 reviewsprevious 

work by other researchers on the generation of non-orthogonal, 

orthogonal and conformal (a subset of orthogonal) meshes. The associated 

equations and transformations are outlined and the advantages and 

disadvantages of the alternative approaches are discussed. Sections 4 

and 5 respectively detail the method devised here to generate curvilinear- 

orthogonal grids, and present some sample results for two practical 

configurations that arise in diesel engine combustion chamber analyses. 

3. Previous Research  

In recent years, numerical techniques have been devised for 

solving the differential equations of fluid mechanics when written 

in terms of general curvilinear-orthogonal (see e.g. Gosman et al [5]) 
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and non-orthogonal (see e.g. Cusolo and Orlandi [6]) co-ordinate 

systems, thereby allowing a much greater range of boundary configurations 

to be efficiently handled that has previously been possible. Each 

approach has its pros and cons, but these will not be discussed 

here, for the present concern is with the generation of the computing 

meshes which both require, with special emphasis on the orthogonal 

systems. 

Applications of non-orthogonal co-ordinates for the solution 

of flow problems are few, primarily because of the complexity 

of the resulting equations, especially in three dimensions. Amsden 

and Hirt [7] employ a non-orthogonal grid in their Arbitrary 

Langrangian-Eulerian (ALE) finite-difference method [8] for fluid flow 

calculations. The iterative technique they devised for generating 

the required grids involves initially prescribing a regular mesh 

and then systematically distorting it such that the exterior nodes 

are caused to move to the boundaries of the solution domain while 

the interior nodes are moved to positions given by weighted means of 

the co-ordinates of their nearest neighbours. The magnitude and 

direction of the weighting is adjustable so as to prevent excursions 

of the mesh outside the solution domain as may happen, for example, 

at convex boundaries. The method is effective and economical, but 

is restricted to non-orthogonal mesh generation as orthogonality 

is not prescribed at the boundaries. It is analogous, as will be 

seen later, to numerical solution of differential equations for the 

physical co-ordinates of the mesh. 

Thom and Apelt [1] were amongst the earliest researchers 

to produce conformal meshes for fluid mechanics calculations, 
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equivalent to a potential flow solution for the problem under study. 

Two alternative methods of generating such meshes were evolved, namely 

a 'direct' one involving solution of differential equations for the 

stream function (i)) field and the orthogonal velocity potential (0 ) 

field on a regular Cartesian x-y mesh and an inverse method requiring 

solution of equations for the x and y co-ordinates on a regular 0-0  

mesh. 

In the direct approach, 	is obtained from an appropriate 

finite-difference approximation to the Laplace equation: 

2 32 
+a  -0 

DX 	ay 
(1)  

in which p has known values on two opposing boundaries and zero normal 

derivative on the other pair. Then, the conjugate function 0 is found by, 

for example, integrating the Cauchy-Riemann equations, i.e. 

2 - ~1 = - f °w dy = f ā~' dx 
1 	1 y 

Finally, interpolation is used to obtain the x-y co-ordinates of the 

intersections of the iso-4 and iso-ip lines. 

On the other hand, their inverse method involving solution of 

the Laplace equation for one of the physical co-ordinates, i.e.: 

2 	2 
2-4  + 	- 0 

and integration of the Cauchy-Riemann equations to obtain the other: 

x2 - xi l = t ā d4 _ - t ā d4 	 (4) 
1 	 1 

gives the x and y co-ordinates of intersecting 	and 0 lines directly. 

This approach however has a drawback which is described below. 

(2)  

(3)  



- 262 - 

(5) 

The determination of a field of x-y co-ordinates which correspond 

to prescribed values of i  or 	is equivalent to the mapping process 

illustrated in fig. 1, where an arbitrary region R in the physical (x-y) 

plane is transformed into the rectangle R' in the transformed (Ny-0) 

plane: thus, the point (xl,y1 ) maps to 
(01
4

1 ), (x2,y2) to (01
4
2),  

(x3,y3) to (02,11,2) and (x4,y4) to (0241 ). Specification of the 

physical co-ordinates of the boundaries and the limits on one of the 

transformed co-ordinates (say ,y2-1,1 ) is sufficient to determine the other 

interval (02-01 ). Conversely, if (02-01 ), 
 (1'2-11'1) and three of the 

boundaries in the physical plane are specified, the other physical 

boundary is a function of the solution. Thus, in Thom and Apelts inverse 

solution method, the initial specification of a regular tp-cp, mesh determines 

the final shape of the geometry considered as either x or y are functions 

of the solution and it was noted that the location of grid points on the 

boundary, which determine the locus of the boundary,sometimes differed 

from that desired. 

This problem was circumvented by Hung and Brown [9] , who used 

essentially the same method of inverse solution but devised a method 

for automatically adding or deleting mesh lines in one direction such 

that the potential (42-q1 ) was determined as part of the solution. Hung 

and Brown also examined the accuracy of the final solution by evaluating 

a residual based upon the satisfaction of the Cauchy-Riemann equations 

and found the greatest errors where the meis coarsest in the physical 

plane. 

Winslow [10] started from the two Laplace equations for the 

potential and stream function of an irrotational flow: 

a-2- + 	= o 
ax 	ay 

3
2
* + arm =0 

ax 	ay 

(5) 
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but obtained the inverse form of these -by using the general 

transformations: 

a ct) _ _ 1 ay 	att = 1 ay 
ax 	J ā~ ' 7(J a7p 

lt.= 1 ax 	a_j, = _ 1 ax 
ay Jā» ' ay Jāp 

where the Jacobian J of the transformation is given by: 

J = ax ay _ ax ay 
apa 	ao ap 

to yield: 

a a2x - 2 s a2x + a2x - 0 

2 	2 	2 
a

a~ 
-2 S 

44
+y

a L 
- 0 

Here a, S and y, which are related to the metric coefficients of 

the transformation, are the quadratic functions: 

a = (aX) 2 + (ā) 2 

s ax ax 	ay ay = āq) p ācp alp 

y = 
(aX)2 + (a)2 

Equations (8) and (9) were approximated by finite-difference expressions 

on a triangular mesh in the 0-4 plane and solved for the physical co-

ordinates. The grids generated by Winslow were non-orthogonal however, 

as fixed points were chosen to locate the vertices of the triangles at 

boundaries. 

In connection with the above approach, it should be noted that 

orthogonality requires satisfaction of the Cauchy-Riemann equations which, 

(6)  

(7)  

(8)  

(9)  
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under a general transformation become: 

ax_ a aY 
a 	4 

aY=- a ax 
a(p, 

where a is the aspect ratio given by: 

a2 =Y 
a 

Thus for an orthogonal mesh, equations(8) reduce to: 

+a2 a- 	= 0 

	

a~ 	a~ 

	

2 	2 
+ a2 	- 0 

	

act) 	a,') 
and the central terms in the original versions are therefore redundant. 

It should also be noted that conformality of the transformation 

dictates that the aspect ratio is unity and under these circumstances 

equations (12) reduce to the true Laplacian. 

Pope [11] used equations (12) to generate curvilinear-

orthogonal meshes for use in the calculation of flow in curved 

diffusers. The aspect ratio was calculated by integrating the Cauchy-

Riemann equations along a selected boundary in the transformed plane; 

e.g., for a ~ = constant boundary, a is obtained from: 

1 ax 
a = - y2_yl)t a d~, (13) 

Boundary conditions are required for both x and y at all locations 

on the perimeter and these were determined from (i) a specification 

of the boundary loci (i.e. f(x,y) = 0) and (ii) by integrating 

the appropriate conjugate function (eqs. 10). Equations (12) were 

approximated by a simple five-point finite-difference scheme and 

(10) 

(12) 



- 265 - 

(8) 

the resulting equations were solved iteratively using a line-by-line 

method. 

Barfield [12] presented a method for producing nearly-

orthogonal curvilinear meshes in a least-squares sense, subject to the 

constraint that mesh lines are matched to specified points around the 

perimeter of the region. This was achieved by deriving fourth-order 

equations for the co-ordinates, viz: 

a4x32x 	2 32x 
w2 203 20+ w

l (--   + a 
ā 

) = 0 
DO  

(14) 

2 	2 

W2 	
aY  + w ( aY +a2 	) -0 

a2 a2~ 	1 ao2 	aq) 

where wl and w2 are arbitrarily specified weights. It was found that 

with w1 = 1 and w2 = 0 (that is, equivalent to eqs. 12) and a prescribed 

value of a, that meshes would occasionally "spill-over" across convex 

boundaries, as would be expected from earlier remarks. However, the absence 

of an orthgonality prescription at the boundaries resulted in non-

orthogonal meshes. 

Also described by Barfield is a technique to link "sub-regions" 

together at common boundaries to obtain mappings of more complex shapes; 

a similar approach is employed in the present work. 

A technique for obtaining curvilinear orthogonal grids was 

developed by Watford [13] which, unlike the methods described so far, 

allows a strong measure of control over the locations of either the 'P 

or 0 grid lines. This is achieved by first generating a non-orthogonal 

mesh using an explicit algebraic transformation which may be specified 

so as to optimise the disposition of the chosen set grid lines and 

then transforming to an orthogonal mesh by finding the orthogonal 

	

trajectories of the other set. 	The latter only requires 
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non-iterative solution of ordinary differential equations which 

is a further advantage of the method. 

4. Description of the Present Procedure  

4.1 Selection of the co-ordinate equations to be solved 

As previously mentioned, the generation of an orthogonal 

mesh can be accomplished either by solving equations (5) for cp and 

p on a regular x-y mesh and then interpolating to obtain the x,y 

co-ordinates of the iso-0 and iso-P lines or by solving the inverse 

equations (8) for x and y directly. The latter method has been chosen 

on the basis that it avoids the need for interpolation of the 0-i1) solution. 

A conformal mesh with the attendant problems already mentioned, notably 

the tendency for the mesh to stray outside the boundaries, seems 

undesirable, and experience has shown that this tendency is only 

partially alleviated by going to a non-conformal mapping with constant 

aspect ratio. Accordingly, the maximum flexibility will be procured 

by allowing the aspect ratio to vary from point to point, in a manner 

which will be determined as part of the mesh generation: thus the 

basis for the method will be equations (8). 

Equation (8) may be expressed in finite-difference form using 

second-order central differences on a mesh in the transformed plane 

with uniform* but different spacings Alp and AO in the respective co- 

ordinate directions as: 

*Variable mesh spacing could be used- to alter the local grid density, 
but second-order accuracy would be lost and in any case the same 
effect can be achieved by the grid selection procedure to be 
described later. 
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x -2x +x 	x -2x +x 
E 	P 	W} +Y{  N 	P 	S} = 0 

AV2 
(15) 

where the NSEW-P notation is shown in fig. 2. The associated functions 

(9) for a and Y are also approximated by central differences: 

a - {  
xN~~xS 

} 2 + {y~j2~ yS 2 	} 

{xExW 
2 + {yE2~ yW} 2 Y 	

~~  } 
	 cp 

Equation (15) may be expressed in the form: 

Apxp = ANxN + ASxs + AExE + AWxW 

where the coefficients are given by: 

AN = AS = (xE - xW)2 + 
(yE - yW)2 

AE = AW = (xN - xS)2 + (yN - yS)2 

An equation similar to (17) may be derived with y as the dependent 

variable, whose coefficients are also defined by (18). Interlinkage 

between the equations exists via the coefficients and also the boundary 

conditions, as described below. 

4.2 Boundary Conditions  

In essence, the boundary conditions require that the co-ordinate 

lines linking boundary locations to internal grid points should be 

orthogonal to the boundary. The method used here to impose this 

requires only that the boundary be specified in the physical plane 

(16)  

(17)  

(18)  
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in terms of a discrete or continuous specification of its co-ordinates 

xB, yB, i.e.: 

f(xB, yB) = 0 	 (19) 

The approach adopted is to postulate an initial guess of the co-ordinates 

of the boundary grid nodes and to then refine them by successive 

iteration on the equations expressing the orthogonality condition. The 

procedure will be described in conjunction with fig. 3, where P(xP,yP) 

is a typical internal mesh point, P(xB,yB) is the 'correct' location 

of the adjacent boundary point and P(xB*, yB*) is an estimate of the 

latter location. The method requires that the form of the boundary 

equation (19) is continuous and explicit in the first derivative 

over the region of interest. This is arranged for situations where 

the boundary is specified as discrete points by fitting a piecewise 

parametric cubic polynomial [14] to the (xB, yB) boundary co-ordinates, 

this equation having a continuous first derivative over its length. 

The slope of the boundary curve (-)B*  evaluated at the 

approximate nodal location (xB*, yB*) is used to obtain equations 

for straight lines passing through the internal grid point and the 

'correct' location, viz: 

yP  = - (TA*  B* xP  + C 

yB  = - (-27)B*  xB  + C 

The points P(xB, yB) and P(xB*, yB*) are linked, to first-order 

accuracy, by the equation: 

B* 	B 
(4) B* - XB*  - 

xB 

Eliminating c between (20) and (21) and yB  using (22), 

a better approximation is obtained for the coordinate point xB  via 

(20)  

(21)  

(22)  
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the iteration formula: 

xB _ yB* yP-xB*(dx) B* xP(~)B*  

-(dx)B* (%)B* 

This equation may be used to make further refinements to x6 

in an iterative fashion. The value of yB is obtained from the boundary 

specification, i.e. equation (19). In the case of a horizontal boundary 

(y = constant), for which ()Bl is infinite, the latter is replaced 

by a large number, typically 1030, which effectively sets xB xP, 

the correct solution. For a vertical or near-vertical boundary, equation 

(23) is replaced by a similar one for y6, which is arrived at in an 

analogous fashion. 

4.3 Overall solution procedure  

There exist a variety of methods available for solving the 

equation set represented by (17), (23) and their counterparts for yp, 

given any boundary configuration (19). The method must perforce be 

iterative, due to the nature of the boundary treatment outlined above, 

plus the fact that the equations are non-linear. The method employed 

here is of the block-iterative variety: specifically, iteration by 

lines is employed in the Gauss-Seidel manner, as described by Ames [15]. 

In this, eqn. (17) and its counterpart for yp are solved alternatively 

and repeatedly along constant-4 and constant-ip grid lines, the 

solution being made possible by forcing the equations into a tri-

diagonal form, with terms relating to neighbouring lines simply evaluated 

from prevailing information and temporarily taken as known. After 

each iteration the xB and yB are updated using the boundary formulae 

(23) 

and the whole process is repeated until convergence is obtained. Solution 
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of the tri-diagonal systems is achieved by the simple Gaussian elimination 

procedure often referred to as the Thomas algorithm also described 

by Ames [15] . 

4.4 Accuracy, stability and convergence  

The differencing practices employed here for equations (8) 

and (9) yield a coefficient matrix for the discretised versions (17) 

which is unconditionally diagonally dominant: this property is known 

to be a sufficient condition for convergence of a linear system of 

algebraic equations (see, e.g. Ames [15]), i.e. ones for which the A's 

are constant. Although the latter is not the case here, experience has 

shown that the procedure adopted still works satisfactorily without 

recourse to such measures as under-relaxation. 

The accuracy of the solutions obtained can be defined in the 

present context in terms of the degree of orthogonality of the curvi-

linear mesh. This is evaluated at each mesh intersection by fitting 

an equation of the form: 

y = f(x) = Ax2  + Bx + C 	 (24) 

to the intersecting co-ordinate lines in the physical plane and then 

deducing the angle from: 

cos e - 
(1  + (N)i 

(1 + (ctX)Di  

The coefficients A, B and C in eqn. (24) are determined from the 

requirement that f(x) passes through the intersection point and the 

adjacent nodes lying on the grid line in question. This method of 

determining 0 is of the same order as the differencing scheme. 

1 	(āx)(1)(.57)1 
(25) 
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Fig. 4 shows the orthogonality error E in degrees at two 

locations within a 40 x 40 mesh plotted against the number of iterations 

for a section of curved duct whose shape is shown in fig. 6. The two 

locations correspond to an inner grid point in the centre of the field 

(4' _ l'max/2' 4)  _ 4 max/2) and the point at which the maximum value of 

error in the entire field occurs. In general the location of the latter 

can and does vary as the solution proceeds. At 250 iterations, a 

converged solution has been reached and this shows that the inner 

mesh location has a residual error of less than 1°  whilst the maximum 

error, which occurs at the top right and bottom left regions of the 

duct where the mesh is relatively sparse, is of the order 3°. The co-

incidence of the two curves up to approximately 150 iterationsindicates 

that the maximum error in the field occurs at the inner mesh location 

until a converged solution is approached, that is, the position of 

maximum error moves from the centre toward the boundary as the solution 

progresses. 

Fig. 5 shows the variation of error with mesh spacing at the 

central mesh point, with the four results shown being obtained using 

40 x 40, 30 x 30, 20 x 20 and 10 x 10 grids, corresponding to 

4 = Alp = .25, .33, .5 and 1 respectively. This diagram confirms 

that the error decreases with mesh refinement according to an equation 

of the form: 

E = KAn 	 (26) 

where n -1.7. The present scheme is therefore of the usual central 

difference accuracy i.e. approximately 2nd order (n = 2), the slight 

discrepancy probably being caused by the lower accuracy of the boundary 

solution: no doubt this could be improved, but this was not regarded 

as a priority in the present study. 
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5. Practical Applications of the Method  

5.1 The Diesel engine combustion chamber 

Situations often arise in practice where the boundary configuration 

does not strictly fulfill all the criteria which are required for a 

perfectly-orthogonal mesh. The direct-injection Diesel engine combustion 

chamber is such a case, in which the criteria that the boundary 

intersections in the x-y plane corresponding to points 
((p1' 1), (.t2,11,1), 

(41'2) and (4
2,2) (see fig. 1) in the 44 plane should be orthogonal, 

is inviolate. It turns out however that the present method can be used 

in these circumstances if a certain degree of non-orthogonality in the 

offending regions can be tolerated in the fluid dynamics calculations. 

This is usually the case, especially when,as in for example [2],the 

latter are based on integration over finite volumes surrounding each mesh 

point, and account therefore can be taken of local non-orthogonality if 

important. 

Fig. 7 shows a 32 x 32 mesh generated for such a geometry. The 

discrete co-ordinates used to define the boundary shape are shown as 

crosses on the perimeter. The locations labelled (A) and (B) indicate 

the non-ideal aspects of this configuration: thus at (A), the boundary 

intersection angle is approximately 30°, whilst at (B) this angle is 

180°, i.e. the boundary is continuous. The maximum orthogonality 

errors in the grid occur in these regions and are 5.9°  and 9.4°  

respectively. In regions not influenced by the non-orthogonal specifi-

cation, the errors are of the same order as those for the configuration 

of fig. 6 with a similar number of grid nodes. The computer time 

required to generate this grid was lOs on a CDC 7600. 
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5.2 Grid selection and the calculation of eometric data  

In this subsection a technique is described for the selection 

of a computational grid suitable for fluid dynamics calculations from 

a mesh generated by the method outlined above, and the associated 

determination of all of the geometric parameters required for such 

calculations, viz. the cell face areas, volumes, arc lengths, radii 

of curvature and local angles with respect to a reference plane. The 

latter is here taken to be the x-axis, which, for an axially symmetric 

situation is taken to coincide with the centreline. 

The necessity for a grid selection procedure arises because 

the mesh locations in the physical plane are not known ā priori and 

it is not therefore possible to arrange for them to be concentrated 

for example, in regions of high boundary curvature as required for 

the fluid dynamics calculations. The method chosen here to overcome 

this disadvantage is simply to initially generate an excessively fine 

grid and then to select from this the grid lines which are suitable 

for the final mesh as illustrated by fig. 8. This is not a perfect 

solution by any means, nevertheless, it does offer some degree of 

control over the mesh disposition and is easy to implement. 

Concerning the geometric data, the calculations of these are 

based on the piecewise parametric cubic polynomial fit [14] to the 

co-ordinate lines, and have proved to provide an accurate method for 

the necessary integrations. Fig. 9 shows a selected region of the 

mesh where the continuous lines have been selected for retention and 

the dashed lines are to be discarded, i.e. the imaginary fluid mechanics 

control volume is bounded by the continuous lines with vertices ABCD: 

for the sake of generality the volume is assumed to be a body of 

revolution centred on the x axis. 
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The arc lengths DS of the volume boundaries are computed 

from the following relation: 

AS = /1(C-10 4. + (ds)2}1/2 ds 

and cell face areas (AA) from: 

AA = !Ka?) )2 + ( )2}1/2 ds 

where y, dx/ds and dy/ds are evaluated from the cubic polynomial equation, 

and the limits of integration are defined by the mesh intersections 

AB, BC, CD and DA. 

The volume (V) of the region bounded by ABCD is calculated 

from: 

V= 2§y2 	. ds (29)  

where 5 indicates integration around the boundary ABCD. 

The radii of curvature rfi, and r, shown in fig. 9 are 

given by: 

and: (30)  

1 _ 1 ak 

r 	£ 	a 

where the metric coefficients Q and t
(I) 

are defined by and obtained 

from, for example: 

(0= 
ā)2 

• 

~ā)2}BC2 	OBCQ C { 	

(31) 

(Y AB {(ax)2 

▪ 

(ay)2}1/2 = (AS) AB a~ 	8~ AB AAB 

Here ASAB is for example the arc length along the ip = const. line 

between grid points A and B. The above formulae allow a relatively 

(27)  

(28)  
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simple finite difference approximation to be obtained for the mean 

radii of curvature in terms of the arc lengths joining the vertices, 

thus: 

r  - (AS)2 
11) 	ASBC  - ASDA  

r  -  CAS)2  
ASAB  - 

SCD 

where: 

(AS)2= 	{ASBL  + ASDA} 
fASAB  + ASCD} 

(32)  

(33)  

5.3 Problems requiring multiple mappings: prechamber engine configuration  

Certain classes of problems involve complex geometrical 

configurations such as the Diesel engine combustion prechamber depicted 

in fig. 10(a), for which the combination of boundary discontinuities 

and far-from-rectangular shape make mapping into a single rectangular 

region inappropriate. In this section a method is described whereby 

such configurations are subdivided into a number of subregions, grids 

being generated independently for each of these subregions and the 

interfaces or junctions between them matched to produce continuous grid 

lines in the physical plane for the entire region. For the example 

of fig. 10, this approach is equivalent to the mapping of the original 

configuration of (a), R, to the transformed region of (b), R', where 

the shape of the latter now conforms more logically to the problem 

than would a simple rectangle. Points of correspondence between the 
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x-y and p-cp planes are indicated in the diagram. This mapping, if 

attempted directly, is difficult, primarily because it is not known 

ā priori which grid lines map to which boundary. 

The generation of the individual grids for the subregions 

ABCI, IJGH and JDEF is performed in the manner indicated earlier, 

yielding the result shown in fig. 11. Fig. 12 shows the interface 

region between these grids in more detail. Although it is possible 

to formulate the discretised fluid mechanics equations so as to 

allow solution across these interfaces with their discontinuous grid 

lines, the organisation of such calculations is considerably simplified 

if lines are made continuous. Linear interpolation is therefore used 

to generate additional grid lines in one or both of the adjacent 

regions in such a way as to procure continuity. The final selected 

grid, which has been employed for fluid dynamics calculations described 

in [16], is shown in fig. 13 and a magnification of the junction region 

is given in fig. 14 showing the now-continuous system. This procedure 

also lends itself well to interactive computing in conjunction with a 

graphics terminal. 

6. Summary  

A simple technique has been described for generating 

curvilinear-orthogonal meshes to fit complex geometrical configurations 

and for the deduction therefrom of geometric data required for numerical 

fluid dynamics calculations based on curvilinear-orthogonal formulations 

of the equations of motion. The technique relies on direct numerical 
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solution of Laplace equations for the physical co-ordinates of the 

grid intersections, with the solution being obtained on a regular 

rectangular grid in transformed space. 

A technique of mapping complex geometries by subdivision 

into subregions which are subsequently connected has also been 

described which is both simple and powerful. Both techniques are 

ideally suited for use on interactive computer graphics systems. 
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8. Nomenclature  

A 	coefficient of finite-difference equation or area 

a 	aspect ratio 

E 	error (degrees) 

Q 	metric coefficient 

J 	Jacobian (defined by equation 7) 

r 	radius of curvature 

s 	path of integration along iso-ip or iso-q line 

S 	arc length 

V 	volume 

x 	physical co-ordinate 

y 	
II 	II 	1I 



II 	I' 	
i 

vertices of selected grid 

grid points 
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Greek  

a 	quadratic function (defined by equation 9) 

Q 	II 	 II 	 11 	 U 	 II 	 II 

I,V~ 	II 	 II 	 II 	 II 	 II 	 II 

A 	increment 

V 	Laplacian operator 

'p 	transformed co-ordinate 

II 	 II 

Subscripts  

IP 

A,B,C,D 

N,S,E,W,P 

relating to 1p 

Superscripts  

P 	internal grid point 

B 	boundary point 

* 	guessed or intermediate value 
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Fig. 1 The mapping process: correspondence between the  

physical and transformed planes  
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Fig. 2 Grid layout and notation  
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Fig. 3 Boundary calculations: layout and notation  
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Fig. 6 Orthogonal grid for curved duct 
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Fig. 7 Diesel piston grid  

Fig. 8 Selected grid for Diesel piston based on  

the original grid of fig. 7  
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Fig. 9 Grid selection procedure  
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(a) Prechamber engine - physical plane  

1 

R' 

(b) Prechamber engine - transformed plane  

Fig. 10 Physical and transformed planes for complex discontinous geometry 
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Fig. 11 Division into sub-regions showir.g independent mappings 

Fig. 12 Magnification of junction region showing discontinuous mesh 
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Fig. 13 Result of grid selection 
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Fig. 14 Magnification of junction region after selection showing 

continuous mesh 
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APPENDIX 2  

TRI-DIAGONAL MATRIX ALGORITHM (TDMA) 

The general finite-difference equation 4.17 and its 

counterparts for the v1 and v2 velocities (4.27 and 4.28) 

may be expressed in the form: 

APcij = AN4i,j+l + As~i,j-1 + AE~i+i,j + AW~i-1,J + S(15 
(A2.1) 

where the points-of-the-compass notation on the (pis have been 

replaced by the i,j subscripts. Equation A2.1 represents a set of 

simultaneous algebraic equations equal to the number of values of 

in the field to be determined. 

If the values of c either side of, for example, line i 

(i.e. Ci-1,j and cpi+l,j for all j) are temporarily regarded as 

known, then equation A2.1 reduces to: 

(pj = Ajcpj+1 + Bj~j-1 + Cj 

where 	A. = ĀN, 	B~  • 
= AS 

P 	 P 

(A2.2) 

and 	C - 
J 
	A 

P 

and the i subscript has been dropped in A2.2. If the cp values 

at the boundaries j = 1 and j = M are known, then, for example: 

Al = B1 = 0, C1 = cp1 (A2.3) 

(AEci+l,j + AA-1,i + S ) 

Thus, equation A2.2 represents M-2 equations for which the coefficient 

matrix is tri-diagonal. The method of solution used here is sometimes 
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referred to as the Thomas algorithm (Householder, 1964) but is merely 

a special adaption of the Gaussian elimination procedure, as described 

below. 

If (1)j is expressed in terms of (t)j+1 only, thus: 

j = A14).  
+1 	+ C j 

then equation A2.2 may be written as: 

(1)j = Ah1
.1 	BjAj_1 4 . + B .C j-1 + Cj 

which after rearrangement, becomes: 

A. 	B.C~_1 + C. 

~j - (
1-B.AJ-1 )

'rj+l + 	1-BA
,  

Comparison of the coefficients in equations A2.4 and A2.6 gives 

the recurrence relations: 

(A2.4) 

(A2.5) 

(A2.6) 

Aj 

J A 	1-B.A. 
j J-1 

, - B
~C~-1 + C C 	3  

j 	1•-BjA
J-1 

(A2.7) 

Using the values for Al, B1 and C1 given by equations A2.3, the 

recurrence process is started by the values: 

A' = 0 , Cl = (I)
1 

(A2.8) 

and proceeds from j = 2 to M-1. 

When the Ad's and C's have been assembled for the line, 

the cpj's are determined from equation A2.4. 

This process is carried out for each i line in turn by 

starting at the line adjacent to one boundary (i=2) and marching 

through the field to the line adjacent to the opposite boundary (i=N-1). 
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Similar equations to the above can be derived by assuming 

the it's on adjacent j lines to be known, and the procedure is subsequently 

repeated for j = 2 to j = M-1. 
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APPENDIX 3  

FORMULATION OF EQUATION 4.114 AS A POWER SERIES  

Equation 4.114 is: 

Tn - 

T° 

(y-1)(zH)

• 1

/2 
y ZH (A3.1) 

y 1 
zu 

• 

1/2 - (_)(n) 
H 

Replacing zH/zH by (1-b) and (y-1)/y by a, equation A3.1 becomes: 

Tn 	1 - 
ao-b)-1/2 

T° 	1 - a(1-b)
1/2 

Multiplying A3.2 by 1 + a(l-b)1/2 produces, after simplification: 

Tn _ 1 - a2 - ab(1-b)-1/2 

T° 	1 - a2 + a2b 

Noting that: 

(A3.2) 

(A3.3) 

1/2 - 	1 	(- 2)(- )(-b)2 + (- 2)( - 2)(- 2)(-b)3 

and: 

(1 + arm) 	1) -1 = 
1 + 

(-1)22b + (-~-2)(a)2 +.... 
1-a 	1-a 	• 	1-a 

(A3.4) 

(A3.5) 

equation A3.3 may be expressed as: 



2 	r, 
u)" - 1 	+[ _11 ( 

1 -a 
)b 

1 -a n=0 

13 	1 
+ _' a2 + a2 2 b2 1.-2-r

' 	11-a (1 	) 

= 
2 

b 
1 -a 
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n 	 13 	135 

To = {1 - ( 	)b [i b2+ 	+ 2~3 b3 + 	 
1-a 	r

x {1 abo +(a~)2 + 	 
1 -a 	1 -a 

} 

} 

135 	13 
-Z' 	 a2 	 2 + 1 ( a )2 _ (1:--174 2 ) 3 b3 

3. 	2. .77 ~' l ā   

+ 	 } 

2 
Ē (

-a 
)n - ( 	 °2)b {1 + 

n=0 1 -a" 1-a 

1 3 	1 n 	~.~... (2- + m-1) -a2 n-m n 	 , n=l b { m=1 	 m. 	( t 

2 
+ (. 	)n}} 

2 
= 1+ E (- )"b" {1-( a 2)b} 

n=1 1-a 	1-a 

- ( a )b 	( a ) Ē bn+1 { 	2. 	i ( + m-1) (-a2 )n-m 
1—aa 	1-a2 n=1 	m=1 	m ' 	 1-a 

(A3.6) 
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The coefficients of this series for b, b2  and b3  are as follows: 

b: 

.Y = (Y-1) (A3.7) 

b2: 

2C1aā)2 = 2(Y-1)(Y-2) (A3.8) 

b3: 

- a(8a2  - 9a + 3) _ -(Y-1)(2Y2  - 7Y + 8) 
8(1-a)3 	8 

(A3.9) 

Taking a value y = 1.4, coefficients A3.7 to A3.9 have the numerical 

values given in table 4.1. 
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Development of a Predictive 
Tool for In-Cylinder Gas 

Motion in Engines 

A. D. Gosman and R. J. R. Johns 
Imperial College 

1. BACKGROUND 

IT IS GENERALLY accepted that air motion and 
turbulence in diesel engine cylinders are very 
influential on the combustion process, as is ex-
emplified by the studies reported in (1,2). Pre-
vious work on air motion in diesel engines has 
analysed two main aspects, namely the induction-
induced swirl and the compression-induced squish. 
Fitzgoerge and Allison (3) developed a method for 
predicting the end of compression swirl in the 
bowl of a direct-injection engine. Their flow 
model consists essentially of two rotating, co-
axial cylinders of air, one in the piston bowl 
and the other in the cylinder: solid body rotat-
ion is assumed to prevail in each region. Ex-
change of angular momentum is postulated to occur 
between the two regions due to the displacement 
of the fluid by the piston, and all shear effects 
are neglected. As a consequence of the lower mean 
radius of gyration of the piston bowl region, the 
swirl speed therein increases as TDC is approached. 
Input data in the form of measurements of the 
flow rate and swirl level of the incoming air are  

required by the method, which integrates this in-
formation over the induction period to obtain the 
swirl level at the time of inlet valve closure. 
Computations are then continued to TDC and com-
parisons of the TDC swirl levels produced by 
different port configurations are then possible. 
This approach was further developed by Dent and 
Derham (4) to allow for frictional affects at the 
surfaces of the cylinder and piston. They made 
comparisons between results from the theory and 
experiment with which they found acceptable 
agreement. 

Fitzgeorge and Allison also generalised a 
method due to Loeffler (5) to allow predictions 
of the squish velocity variation near TDC. This 
method assumes that the flow in the annulus 
formed between the piston crown and cylinder 
head near TDC is one dimensional and in the 
assumed absence of spatial pressure gradients 
and frictional affects can be calculated from 
mass conservation considerations alone. Dent 
and Derham (4) made comparisons between 
predictions of the radial velocity distributions 
in the annulus with this method and experiment 

ABSTRACT 

A method is described of calculating the 
flow, temperature and turbulence fields in cylin-
der configurations typical of a direct-injection 
diesel engine. The method operates by solving 
numerically the Navier Stokes equations that 
govern the flow, together with additional equat-
ions representing the effects of turbulence. A 
general curvilinear-orthogonal grid that trans-
lates with the piston motion is used for the cal- 

culations in the complex-shaped piston bowl, 
whilst an expanding/contracting grid is used else-
where. Predictions are presented showing the 
evolution of the velocity and turbulence fields 
during the compression and expansion phases of a 
motored engine cycle, for various shapes of axi-
symmetric piston bowl and various initial swirl 
levels. These results illustrate the strong influ-
ence of these factors on the TDC flow structure. 

0148.7181!78/0227-0315$02.50 
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and again quite reasonable agreement was found. 
Shimamoto and Akyama (6) refined the Fitzgeorge 
and Allison squish model to allow for leakage 
past the piston rings and heat transfer from 
the cylinder wall. They found that the combined 
affect was most apparent between 20°  BTDC and 
TDC and could decrease the maximum squish 
velocity by up to 10%. 

More recently, the advances made in 
numerical methods and digital computers have 
allowed solutions of the Navier-Stokes equations 
to be obtained for complex flow situations 
similar in some respects to those encountered 
in engine cylinders. Watkins (7) obtained 
finite difference solutions to the flow 
equations for axisymmetric laminar flow in a 
closed cylinder equipped with a flat-topped 
piston, using a novel grid that expands and 
contracts with the piston motion. Chong et 
al (8) used an early variant of this method to 
predict the laminar in-cylinder flow for the 
case of a piston with a cylindrical bowl, 
although the accuracy of their predictions was 
impaired by the particular computational grid 
which they employed. Diwakar et al (9) made 
calculations for a plane two-dimensional re-
presentation of a piston-in-cylinder arrange-
ment that incorporates a valve: they produced 
predictions for both inviscid and laminar flows 
using the explicit finite-difference procedure 
of MacCormack (10) in conjunction with an 
expanding/contracting grid. In an extension 
of the work of (7), Gosman and Watkins (11) 
included in their model mathematical represent-
ations of the effects of turbulence and a 
centrally located valve operated in a four-
stroke cycle. They obtained fair qualitative 
agreement with experimental data for this 
situation. 

Interest in the development of low-emissions 
enginees has stimulated work on predictive 
techniques for divided-chamber spark-ignition 
designs, although of course the divided-chamber 
arrangement has been used for some time in in-
direct-injection Diesel engines. Boni et al (12) 
have made predictions for the compression and 
expansion phases of a spark-ignited prechamber 
arrangement using a version of the 'ICED-ALE' 
method of Hirt et al (13) in which the combustion 
process was represented by a multi-step reaction 
scheme, but a very crude representation of 
turbulence effects was employed. 

Although the ultimate goal of these 
developments is a full computer simulation of 
the in-cylinder processes of reciprocating 
engines, the path will be a long and difficult 
one, stretching the capabilities of analyst and 
computer alike. It is important therefore that 
the simpler representations are exploited to the 
maximum degree. Towards this end, in the present 
study the method of Gosman and Watkins (11) has 
been extended to allow fairly realistic axi-
symmetrical representations of the flow in 
piston-bowl combustion chamber configurations 
of the kind commonly found in direct-injection 
Diesel engines and in certain designs of 
stratified-charge spark-ignition engines. 
Predictions are displayed of the flow evolution 

during the compression and expansion strokes 
under motored conditions for various bowl 
configurations and various levels of swirl. 

1.1 CONTENTS - Sections 2 and 3 of the 
paper are devoted to an outline of the method 
of prediction. Section 2 describes the 
mathematical problem in terms of the different-
ial equations to be solved and showy how these 
can be expressed in a form suitable for solution 
in the presence of arbitrarily-shaped and moving 
boundaries, while Section 3 presents the finite-
difference forms of the equations and describes 
how these are solved. 

Some results obtained with the method are 
presented in Section 4, which commences with a 
sequence of plots showing the evolution of the 
flow and turbulence fields produced by a simple 
cylindrical bowl in the absence of swirl. There 
follows selected predictions from parametric 
studies of the effects of BDC swirl level and 
piston bowl configuration on the flow structure. 
Finally, some comparisons are made between the 
present predictions of squish and swirl velo-
cities and those obtained from the simple 
theories mentioned earlier. The main conclusions 
of the study are summarised in Section 5. 

2. MATHEMATICAL MODEL 

2.1 COORDINATE FRAME AND DIFFERENTIAL 
EQUATIONS - The present method solves the 
differential conservation equations governing 
the flow and heat transfer by numerical, 
finite-difference means. As is usual with 
numerical methods for partial differential 
equations, a computational grid is superimposed 
upon the flow field and solutions are obtained 
at the grid line intersections. 

The flow domain for a closed cylinder with 
a bowl-in-piston arrangement such as that of 
Fig. 1 can conveniently be divided into a disc-
shaped region between the plane of the piston 
crown and the cylinder head, and the region 
inside the piston bowl. This subdivision allows 
an arrangement in which a rectilinear grid that 
expands and contracts with the piston motion 
in the manner of the original method (11) is 
used for the outer disc-shaped region, whilst 
a general curvilinear orthogonal grid is fitted 
to the often-complex shape of the piston bowl, 
this latter grid translating with the piston 
motion. The curvilinear grid is obtained by 
numerical solution of two coupled Laplace 
equations for the coordinates of the intersect-
ions (14). An example of a complete grid is 
shown in Fig. 1. 

The choice of an orthogonal co-ordinate 
frame instead of an arbitrary non-orthogonal 
system was motivated by the relative simplicity 
of the orthogonal-coordinate form of the 
governing equations and hence the smaller number 
of computer operations required to solve them. 
A further advantage is the ease with which 

*Numbers in parentheses designate References at 
end of paper 
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boundary conditions may be imposed. It has been 
found that curvilinear grids can be easily pro
duced for a wide selection of chamber shapes 
using methods such as that described in (14). 

The flow is assumed to be governed by the 
ensemble-averaged conservation equations of 
mass, momentum and energy. Although axial 
symmetry is assumed, the gas may be swirling. In 
the absence of turbulence, the problem may then 
be described by five simultaneous non-linear 
partial differential equat~ons, the dependent 
variables being axial velocity* (v), radial (or 
squish) velocity (v2), circumferen£~al (or swirl) 
velocity (v3), pressure (p)2an~ s~agnation 

enthalpy (h :CvT + p/p : (vl +v2+v
3
)/2) where 

cv' T and p are respect~vely tne constant-volume 
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specific heat, temperature and density of the 
fluid. 

When turbulence is present, as is the case 
in normal circumstances, informat~on is needed 
about the turbulence structure (which is of 
interest in its own right in connection with 
combustion) and its effects on the 'mean' flow. 
This information can be obtained by employing 
a 'turbulence model', which consists of addition
al equations connecting the turbulent.fluxes 
of mass, momentum and energy to known or 
calculable quantities. Turbulence modelling is 
a subject on which much has been written (see 
e.g. (15» and available models range in com
plexity from the simple mixing length theory 
of Prandtl to the differential equations for 
the turbulent Reynolds stresses themselves. It 
is not possible to discuss here the pros and cons 
of the various options: suffice it merely to 
state that firstly, whatever model is selected 
must be capable in principle of realistically 
representing an unsteady turbulent recirculating 
flow, and secondly, the model must place minimal 
additional demands on computing time and storage. 
The representation that currently seems to best 
satisfy these requirements is one comprising 
of two differential equations whose dependent 
variables are the ensemble-averaged kinetic 
energy of turbulence (k) and its dissipation 
rate (E) (see (12) for further details). Accord
ingly the 'k-E' representation has been used in 
the present study, although it should be stressed 
that this is only a tentative choice until 
suitable experimental data emerg~ to allow a 
proper assessment. 

~ The result~ng, now seven, differential 
equations may be generalised for compactness into 
a single equation, wr~tten here in terms of a 
general, moving, curv~linear-orthogonal, 
axisymmetric coord~nate frame: 

- a~ (llrr~ ~t ) - lll2rs~ = 0 
2 2 

(1) 

where: ~ may stand for any of vl' v2' v3 ' P, h, 
k and E, the t~lda superscript denoting a 
velocity relative to that of the coordinate 
frame; rand s are respectively the 'eddy 
diffUSivity' an~ 'volumetric source rate' of 
entity~: t stands for time; ~l and ~2 are 
curvilinear coordinates in planes containing 
the symmetry axis; and II and l2 are correspond
ing metric coefficients, to be def~ned later. 

* The terms "ax~al" and "rad~al" are only 
strictlyappl~cable for the reg~on outside 
faston bowl: w~th~n the latter v1 and v, 
defined along the curvilinear coordinate 
ciirections as shown in Fig. 2. 

the 
are 
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Thus, for example, when 0 is replaced by h, I'4) 
has the significance of an eddy conductivity 
and s contains pressure-work and other terms 
(see,''e.g (11)). 

In general the metric coefficients, which 
connect increments of distance ds in the physi- 
cal plane to increments in the 	coordinates 
via: 

ds = tId~l + .Q2d 2 	(2) 

may be defined in many ways. This flexibility 
allows the coordinate systems required for the 
present application to be constructed with ease, 
as will be explained below. 

For the region within the bowl, where the 
coordinate frame simply translates with the 
piston, the curvilinear gird is calculated as 
described earlier and the metric coefficients, 
which are time-invariant in this case, are then 
computed from eqn. (2) and the specification 
that El and i;2 both range over fixed intervals, 
taken as unity for convenience. If the instant-
aneous piston velocity is denoted by v , then 
the relative fluid velocities calculatēd in this 
frame are related to absolute ones by: 

vl = v1 + vcos9 	(3) 

v2 = v2 - vpsine 

where 8 is the local angle between the . 
direction and the axis. 

The expanding/contracting coordinate 
frame for the disc-shaped cylinder space is con-
structed by defining Cl = (z - z1)/(z2 - z1) and 

&2 Er/R,where z is an axial coordinate measured 
from the cylinder head, z1 and z2 are reference 
planes which may move with time and R is the 
cylinder radius. The corresponding metric 
coefficients are thenfil= z2 - z1 (which is 
now time-varying) and t2 = R. Tfie local 
absolute fluid velocities are now: 

vl =vl +vg 

v2 = V2 

where v is the local velocity of the coordinate 
frame. 

3. SOLUTION PROCEDURE 

3.1 FINITE DIFFERENCE EQUATIONS - The 
entire region is divided into a number of contrd 
volumes or "cells" by the grid shown in Fig. 1. 
Every cell has a single value of each dependent 
variable associated with it and located at its 
centre. The velocities v and v are exceptions 
and these are located at Ehe 	cen?res of the 
lines forming the sides of the cells, as depict-
ed in Fig. 2. 

The differential equation (1) is integrated 
both in space and time to produce an approxi-
mate algebraic equation, the limits of integrat-
ion being t-4-t.  + dt where dt is the time 
increment and ~l ' &l + d~ , E2 + E2 + 6E2 where 
6E, and 6E22 are the 'lengths of the cell sides. 
Using the 'RSEWP' notation of Fig. 2, this in-
tegrated equation relates the value of the 

(4) 

16. 

~
a 

1 

  

   

Axial direction ( Z ) 

Fig. 2 - Illustration of portion of computational grid and notation 
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dependent variable at the node P and the 
advanced time level Cp  to values at the surrouni-
ing grid points NSEW at the same time level and 
to , the previous time level value. This 
equation 	takes the form:- 

MP(f)P - M;(1)p + A:(c1)P - 0n) - Sp  = 0 	(5) 

where the superscripts o and n refer to the old 
and new time levels respectively. The coeffi-
cients in equation (5) are defined by: 

Mp = (pV)p/dt, An 	(p vlaf)W, AS 	(pv2af)n  

AE = -(pvlaf)n, An = -(pv2af)n, SP  = sOdV 

(6)  

where VP  is the cell volume. The f's in 
equation (6) are spatial weighting factors which 
affect accuracy and numerical stability (16). 
The latter and to some extent the former is 
enhanced by the following specification: 

fw  = 

(1 + 2/Pew)/2, 

1 	, 

O 	- 	, 

for 	IPewl4 2 

for 	Pew  > 2 

for 	Pew <-2 

(7)  

where Pew  = (pv,)2  ($ld&l) 	; and similar 
formulae exist or the remaining f's. Finite-
difference equations for the individual depend-
ent variables may be generated from (6) by 
insertion of the appropriate expressions for 
the associated r

0 
 and sp. 

As a consequence of the above differencing 
practice, the resulting simultaneous equation 
set for each variable possesses the property of 
unconditional diagonal dominance of the 
coefficient matrix, which is favourable to the 
iterative"method of solution which we employ. 

3.2. THE CALCULATION OF PRESSURE - Following 
the practice of Gosman and Watkins (11), the 
pressure field is obtained by a 'guess and 
correct' procedure which invokes the global 
continuity requirement to set the pressure 
level and the local continuity condition to 
establish the distribution. The derivation, 
which will not be reproduced in detail here, 
starts from the finite-difference continuity 
equation (written in this instance in'time-
centred form) for a cell: 

Mp - Mp  = m w  - me  + is  - in 	(8) 

where the m's represent time-averaged mass flows 
across the cell boundaries. Substitution for 
MP from 

Mp Mp + BP' + YpT' 	(9) 

and summation over the entire field (denoted by 
E) yields the following equation for the global 
pressure adjustment P': 

P'Sp = gM; + pc  + Mp - Mp - 	(10) 

where Bp  =VP(ap/aP)T/dt, y =VP(ap/aT)P/dt, T' 
is a mean temperature adjustment obtained from 
solution of the global energy equation, and the 
asterisk superscript denotes an estimate obtain-
ed from the prevailing field values. Equations 
for the local pressure adjustments P' are 
derived by combining the finite-difference 
continuity and momentum equations to yield: 

MP  MP  + ?c (PP - F'' ) + Tmc  + SpP' + ypT' = 0 
• (11) 

where the A coefficients are linked to the 
momentum equations (see (11)). 

3.3 SOLUTION PROCEDURE - Given the initial 
values of and boundary prescriptions on all 
variables, the procedure is to advance an 
increment of time (i.e, crank angle) dt, 
estimate the bulk pressure level from eqn. (10) 
and a like one for T' and then commence the 
local adjustments. The velocities v 1̀  and 2  
are first obtained by iterative solution of 
their respective momentum equations; then eqn. 
(11) is solved for the local pressure adjustments 
and corresponding changes are made to the 
velocities. Following this, the remaining 
variables are solved for in turn from eqn. (5); 
and the entire procedure is repeated until the 
difference equations are satisfied to the 
required degree, the fields so obtained then 
representing the 'initial' values for the next 
time advancement. 

As with all finite-difference calculations, 
the solutions cannot be regarded as representa-
tive of the differential equations until the 
necessary tests have been made of sensitivity 
to reduction in grid and time intervals. At 
the time of writing these tests have not been 
completed and the results shown herein cannot 
therefore be claimed to be free of numerical 
errors. 

4. RESULTS 

4.1 AIR MOTION INDUCED BY COMPRESSION AND 
EXPANSION IN CYLINDRICAL BOWL WITH NO SWIRL - 
Fig. 3 shows at various stages in a compression/ 
expansion cycle the predicted flow field for 
this case in the form of vectors representing 
the absolute velocities and Fig. 4 displays the 
corresponding turbulence intensity distributions, 
Plotted as contours of constant /2k/3/v,  , where 
vP  is the mean piston speed and V1775 is the 
ensemble-averaged velocity fluctuation for 
isotropic turbulence. The cylinder dimensions 
and wall temperatures were prescribed as typical 
of current practice and the speed is 1800 rpm. 
These results were obtained by starting with 
the piston initially at BDC and the fluid at 
rest and then performing as many simulated com-
pression/expansion cycles as were necessary to 
obtain a cyclically-repeating solution, i.e. 
one representative of steady operating 
conditions: this was achieved after about eight 
cycles of piston motion. 

Referring first to the mean flow structure 
in Fig. 3 with the piston at 8PC, the residual 
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air motion at the end of the expansion stroke 
of the previous cycle consists essentially of 
two main toroidal vortices of appreciable 
strength (the velocity scale is shown in the 
figure and the mean piston speed is 12 m/s). 
The first of these is centred near the outer 
periphery of the cylinder and is formed by a 
'reverse squish' phenomenon immediately after 
TDC, as is revealed in plots later in the 
sequence. The second recirculation region, 
nearer the cylinder head, is formed by the 
compression-induced 'squish' immediately before 
TDC as will also be seen in later plots. It is 
interesting to note that both of these vortices 
have persisted for the entire expansion stroke 
and they are not suppressed until subsequent 

compression. A small vortex can also be seen 
in the bowl. This first appears a few degrees 
before BDC and is the result of the inertia 
of the fluid causing it to impinge on the piston 
bottom as the latter decelerates, the fluid 
then spreading like a wall jet and inducing 
the recirculation in the bowl. 

The plot at 60°  ABDC shows the first-
mentioned vortex to have been suppressed com-
pletely, due in part to viscous action, 
(similar predictions obtained by solving the 
laminar flow equations for the same conditions 
show the suppression to be slower) but also to 
the pressure field provoked by the piston motion 
and the chamber configuration, both of which 
exert a significant role in maintaining or 
destroying recirculation. The second vortex 
closer to the cylinder head has decreased in 
strength whilst that in the piston bowl has 
also disappeared. The start of compression-
induced squish can be seen from the inwards 
inclination of the vectors immediately above the 
piston crown and in the plane of the bowl 
opening. 

At 45°  BTDC all residual motion from the 
previous cycle has gone and the flow is 
dominated by the developing squish motion. This 
trend persists, and at 20° BTDC a single squish-
induced vortex in the bowl is well established. 
At TDC the flow is characteristed by high 
inward radial or squish velocities adjacent to 
the cylinder head above the piston bowl, high 
axial velocities into the bowl near the centre-
line and a single strong toroidal vortex in 
the bowl. 

At 24°  ATDC, with the piston moving out-
ward, the reverse-squish mechanism can be seen, 
the air in the outer periphery of the bowl spill-
ing out, impinging on the cylinder head, and 
thence flowing into the clearance space between 
piston crown and cylinder head where it is again 
turned by impingement on the cylinder wall and 
the downward motion of the piston. It is this 
stage that is critical in the formation of the 
second strong recirculating zone depicted in 
the following and initial sequences. 

As the piston begins to move to outward, 
the squish-induced bowl vortex initially 
remains in the bowl and undergoes stretching 
but by the next plot in the sequence at 66°  
ATVC this vortex has been left behind by this 
stage and the 'reverse squish' vortex is now 
clearly visible. 

The contours of turbulence intensity in 
Fig. 4 are drawn at the same stages in the 
cycle as the velocity plots of Fig. 3 to 
facilitate interpretation. Although the contours 
at BDC approximate in shape to the mean flow 
structure, the maximum intensities do not coin-
cide with the recirculation centres. The steep-
est gradients are adjacent to the cylinder wall 
due to the thin boundary layers there. At 60°  
ABDC and 45°  BTDC the turbulence level is 
diminishing, due presumably to reduction in shear 
generation as the large vortices dissipate and 
vanish: however in the latter figure a zone 
of locally-high energy is forming near the edge 
of the bowl as the squish-induced shear stresses 
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there build up. At 21°  BTDC, the general 
turbulence level has risen due to the increasing 
generation in the shear layers eminating from 
the edge of the bowl and the transport of the 
turbulence produced there into the bowl by the 
vortex motion. 

At TDC the turbulence levels are further 
augmented by squish effects, as would be 
expected,and the highest values occur near the 
centre of the cylinder head. It should be noted 
that the peak intensities at this stage are 
very large indeed, amounting to around 70% based 
on the mean piston velocity: however it should 
also be borne in mind that the local squish 
velocities considerably exceed vp  near TDC (see 
Fig. 13). At 24°  ATDC with the piston moving 

7 

outward, the turbulence near the centre of 
the cylinder has rapidly decayed (or has been 
convected elsewhere) and the reverse squish 
mechanism serves to generate high levels near 
the edge of the bowl, which are then convected 
into the clearance gap: this explains why at 
66°  ATDC there is a region of high intensity 
in the gap, although it is not clear why the 
turbulence levels existing at this time are 
maintained and indeed augmented throughout the 
remainder of the expansion phase. The second 
patch of high turbulence nearer the centre of 
the cylinder is presumably the result of the 
generation and transport of turbulence by the 
squish-generated vortex. 

4.3 THE EFFECTS OF SWIRL AND BOWL 
CONFIGURATION - In this section the predicted 
flow patterns at TDC are shown for various 
levels of swirl and different shapes of piston 
bowl. These results were obtained without 
the turbulence model incorporated, but ex-
perience thus far with the few duplicate 
calculations that have been made with turbulence 
simulation suggest that although the magnitudes 
of the predicted velocities are strongly affect-
ed by turbulence, the gross flow structure is 
not. Comparison of the TDC patterns in Figs. 3 
and 5 corroborates this observation. 

Figs. 5 to 8 show the TDC structures pro- 
duced by calculating one cycle without swirl 
and then imposing different solid-body swirl 
levels at BDC and performing another cycle of 
calculation. The swirl ratio S given in these 
figures is defined as the initial swirl in 
revolutions/minute divided by the engine speed. 

It is immediately apparent from these 
figures that swirl strongly affects the flow 
structure. The basic mechanisms are not 
difficult to understand: for example swirl 
directly affects the radial velocities by way 
of a centripetal acceleration; the mass 
continuity requirement feeds these affects 
through to the axial velocities; both veloci-
ties then further influence the swirl 
distribution. The magnitude of these effects 
of course depends upon the swirl rate. However 
the overall picture is much more complex than 
that envisaged by Fitzgeorge and Allison and 
other proposers of simple models, for the 
interaction with the swirl field of vortices 
induced by the squish and swirl mechanisms 
produces distributions of circumferential 
velocity which are far from the idealised 
picture of solid-body rotation. At the time 
of writing analysis of these interactions is 
incomplete (it is necessary to follow the 
details of the evolution of all three 
velocity components over the entire cycle) and 
no attempt will therefore be made to fully 
explain the results. 

Fig. 6 shows that the effect of low swirl 
(S = 1) is to provoke near the axis an addition-
al small vortex centred towards the bottom of 
the bowl and rotating in the opposite sense to 
the single one which existed at S = O. One 
consequence of the appearance of this new vortex 
is that the direction of fluid motion near the 
axis is now out of the bowl rather than inwards 
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FIG. 5 TDC FLOW FIELD FOR CYLINDRICAL 
	 FIG. 6 TDC FLOW FIELD FOR CYLINDRICAL 

BOWL. NO SWIRL 
	 BOWL. $ - 1 

FIG. 7 TDC FLOW FIELD FOR CYLINDRICAL 
	

FIG. 8 TDC FLOW FIELD FOR CYLINDRICAL 
BOWL. S • S 	 BOWL. S • 10 

FIG. 9 TDC FLOW FIELD FOR LIPPED 
	 9G. 10 IOC FLOW FIELD FOR LIPPED 

BOWL, NO SWIRL 
	 BOWL. S • 5 

FIG. 11 TDC FLOW FIELD FOR CURVED 
BOWL. NO SUIRL 

as at'S = 0. A higher swirl level of S = 5 
(Fig. 7), which is a typical value for a diesel 
engine, produces even more dramatic changes: 
there are now two main vortices of roughly 
equal dimensions which are contrarotating, 
the directions of rotation being opposite to 
those of Fig. 6. There is a suggestion of a 
third, smaller vortex near the outer corner 
of the bowl. At S = 10 (Fig. 8) there is a 
further dramatic change, for although there are 
again two strong vortices, the inner one has 
reverted to the original sense of rotation, 
thereby producing a region of strong shear 
between the two. 

FIG. 12 TDC FLOW FIELD FOR CURVED 
BOWL. S - 7 

Figs. 9 and 10 show the TCD flows produced 
when the shape of the bowl is changes from a 
simple cylinder to one with a protruding 
rectangular-sectioned lip. There are strong 
similarities for S = 0 between the flow pattern 
of Fig. 9 and that of Fig. 5 although in the 
former case there is a suggestion of a small 
eddy adjacent to the top lip. (These and 
other calculations suggest that, in the absence 
of swirl, there is invariably a single strong 
vortex in the bowl rotating in the direction 
shown). There is likewise a superficial 
similarity in the prediction for 5 = 5 in Fig.10 
and the corresponding cylindrical bowl predict- 



- 306 - 

9 

ion of Fig. 7 but closer inspection reveals that 
the sense of rotation of the eddies is different 
and the dividing region between them is inclined 
towards the inner corner of the lipped bowl. 

Figs. 11 and 12 show results* for the shape 
of bowl depicted in Fig. 1, which is probably 
more characteristic of current designs than the 
simple cylindrical shape. The cylinder dimen-
sions are again assigned realistic values and 
the speed in this cast is 1400 rpm. Fig. 11 
shows the characteristic single strong squish-
induced bowl vortex which emerges when no swirl 
is imparted to the flow. Fig. 12 shows the 
effect of swirl in this configuration, the 
initial swirl rate being set at S = 7: in this 
instance the TDC flow structure is not 
dissimilar to the S = 0 case, in that there is 
a single strong vortex. However swirl causes 
the centre of the vortex to move towards the 
mouth of the bowl, leaving a region of relative-
ly stagnant fluid where the S = 0 vortex was 
centred. The differences between the two cases 
are even more marked prior to TDC: for example 
at 20°  BTDC swirl causes a twin-vortex structure 
to form similar to that of Fig. 10. 

*It should be noted that the vectors in these 
figures are plotted to a different scale than 
the earlier ones. 

4.3 COMPARISON WITH SIMPLE SQUISH THEORY -
The predictions indicate that the basic 
assumptions underlying the simple squish theory 
of Fitzgeorge and Allison (3) are reasonable: 
for example the flow in the clearance gap is 
closely one dimensional during the last 30 
degrees or so before TDC. It is therefore 
not surprising that the comparisons shown in 
Fig. 13 between the present predictions for a 
cylindrical bowl and no swirl and the fore- 
mentioned theory show close agreement, with the 
former lying slightly below the latter. The 
discrepancies can be plausibly attributed to 
the effects of heat transfer, which were of 
course simulated in the present analysis 
but not in the original Fitzgeorge and Allison 
model. 

4.4 COMPARISON WITH SIMPLE SWIRL THEORY - 
In the light of our earlier observations about 
the observed departure of the swirl velocity 
distributions predicted by the present method 
from the solid-body rotation model on which the 
Fitzgeorge and Allison (3) method is based, it 
is not surprising that significant quantitative 
differences are found to exist in the swirl 
behaviour predicted by the two methods. Fig. 14 
shows comparisons during the latter phase of the 

Degrees before T DC 

Fig. 13 - Comparison between simple squish theory and the present method 
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Fig. 14 - Comparison of swirl predictions with simple swirl theory for 
a cylindrical-bowl piston--BDC swirl rate S = 5, 1800 rpm 

compression stroke for the case of a cylindrical-
bowl piston at an engine speed of 1800 rpm and 
an initial BDC swirl rate S = 5. The lower 
part of the diagram contains the single curve 
of swirl speed versus crank angle produced by 
the simple theory, and two curves representing 
the volume-averaged swirl speed predicted by 
the present method for the bowl and upper 
cylinder volumes respectively. The simple 
method evidently overpredicts the swirl build-
up in the bowl as TCD is approached, due in 
great measure, it is believed, to the neglect 
of friction. This view is reinforced by the 
observed decay in the swirl level in the upper 
cylinder region and also in the total swirl 
momentum for the chamber, which is plotted in the 
upper diagram of the figure. 

4.5 DISCUSSION - Encouragement can be 
drawn from the fact that, as these results 
demonstrate, the present method is capable of  

solving the large system of coupled non-linear 
differential equations governing a turbulent, 
swirling and recirculating flow with heat 
transfer in cylinder configurations characteris-
tic of those found in many current designs 
of Diesel and stratified-charge spark-ignition 
engines. However, although the predictions of 
the method appear plausible, it still remains to 
establish its accuracy, a question which, for 
the present application, is almost inseparably 
connected with the validity of the mathematical • 
representation of turbulence effects employed. 

As to the predictions themselves, in one 
respect they merely serve to confirm what has 
already been inferred directly from flow 
measurements in engines and indirectly from 
combustion performance; namely that changes in 
bowl shape or swirl level may have a profound 
influence on the events in the cylinder. In the 
present case however it is possible to see in 
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far more detail than hitherto just_ what are the 
in-cylinder flow and turbulence patterns for a 
particular set of circumstances. Hopefully this 
information will assist the designer in 
optimising conditions. For example, it may be 
that the stagnant region of flow in Fig. 12 is 
an undersirable feature, and alterations to the 
bowl shape or swirl characteristics should 
therefore be made to remove it. The present 
method may, when sufficiently developed and 
tested, be used to explore various proposed 
alterations in order to identify those which 
show most promise, thereby minimising the 
amount of time-consuming and expensive experi-
mentation required. 

One important drawback of methods which 
focus only on flow and heat transfer is the 
the difficulty of making the connection between 
predictions of these processes and the 
consequences for combustion, which is after all 
the process of ultimate interest. Although it 
is possible on the basis of current knowledge 
to make some inferences, it is probably 
preferable to extend the method to incorporate 
combustion modelling, and work of this kind is 
currently in progress. 

Finally, returning again to the question 
of testing prediction methods of the present 
kind, there is an urgent need for reliable and 
detailed measurements for this purpose. The 
immediate requirement is strictly for data for 
axisymmetric configurations, which is virtually 
non-existent, but even if the axisymmetric 
constraint is relaxed, there are few, if any, 
suitable in-cylinder measurements. The reasons 
for this state of affairs reside mainly in the 
formidable difficulties of obtaining such 
measurements, although techniques such as Laser-
Doppler Anemometry are showing promise (see 
e.g. (17)) in overcoming the difficulties. 
However in planning future experiments it should 
also be recognised that, like the real flow, 
computer simulations reflect whatever conditions 
are imposed on the flow as it enters the 
cylinder= and it is therefore necessary, as well 
as measuring within the cylinder itself, to 
quantify the inlet conditions in as much detail 
as possible. To be more specific, what is 
ideally required are measurements over the entire 
intake process of the distributions in the plane 
of the valve orifice of the velocity components 
and the turbulence level and length scale. 

5. CONCLUSIONS 

The following are the main conclusions to 
be drawn from the present study: 
1. The method here developed is capable of 

solving the conservation equations governing 
in-cylinder flow and heat transfer in typical 
Diesel and stratified-charge configurations 
with swirl under motoring conditions, but the 
accuracy of the solutions remains to be 
assessed. 

2. According to the predictions the presence of 
a bowl provokes, even in the absence of swirl, 
a complex flow pattern containing at least two 

strong vortices, one being formed during the 
approach to TDC by the squish phenomenon and 
the other in the clearance gap by 'reverse 
squish' during the initial descent of the 
piston. The evolution of the turbulence 
intensity distribution can largely be explain-
ed in terms of the flow behaviour, although 
some features are not yet fully understood. 

3. The results presented also demonstrate that 
changes in piston bowl shape and swirl level 
may profoundly alter the flow structure. 

4. Detailed in-cylinder measurements with well-
defined inlet conditions are needed as testing 
grounds for methods of the present kind. 

5. Extension of the method to incorporate 
combustion modelling is desirable in order to 
realise its full potential as a design tool, 
and is in progress. 
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Table 2.1 Relative Degrees of Sophistication of In-Cylinder  

Predictive Models of Previous Researchers  

Research Group 

Details of model 
1 2 3 4 5 6 

1.  Differencing scheme . 

Time-step stability criteria ✓  ✓  

2.  Combustion chamber geometry: 

Moving piston ✓  ✓  ✓  ✓  ✓  

Limited piston bowl shape ✓  

Arbitrary " 	II" 

Limited prechamber ✓  

Arbitrary 	" 	II 
,/ ,/ 

3.  Inlet/Exhaust valve geometry: 

None ✓  ✓  ✓  

Orifice of fixed dimensions ✓  ✓  ✓  

Moving poppet valve ✓  

4.  Turbulence: 

Not included ✓  ✓  

Roughly included V 

Turbulence model ✓  V V 

5.  Wall heat transfer: 

Not included V ✓  

Roughly included ✓  ✓  

Empirically included V V 

1 L 
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Research Group 

Details of model 
1 2 3 4 5 6 

6. Wall momentum transfer: 

Not included ✓  

Roughly included ✓  ✓  ✓  

Empirically included ✓  ✓  

7. Comparison with experiment: 

None ✓  ✓  ✓  

Some ✓  ✓  ' 	✓  

Research Groups: 

1. Watkins (1977) 

2. Diwakar et al (1978) 

3. Chong et al (1976) 

4. Boni et al (1978) 

5. Syed and Bracco (1979) 

6. Present study 
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Constant Cu  C
l 

 C2  K E 
ak a£  

ah 
ak 

Value .09 1.44 1.92 .4187 9.793 1. 

2 
K  .9 .7 1/2 

(C1_C2)C 
 

Table 3.1 Values of turbulence model constants  
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Table 3.2 Expressions for turbulent diffusivity and source terms for 

the curvilinear-orthogonal Eulerian co-ordinate frame  

Dependent 

variable 
r' s~ 

_ 

vl ueff 

av 	2v 

	

- 	
1~+ 	1 	a 	1 	1 	2 

{ 	+ 
tl 	ani 	'1'223 	all 	[Q2~'3(ueff( 	all 	rl 	) 

	

av 	v 	va - 	 (pk + v.v))] 	+ ueff 	ac t21 23 ueff
r
ql aci 	ri 	r2) 1 } 

av 
—go 

	+  uef
v.v 

 2 	 - 22 	 e 	2 ace  

+ 
sins 	_ _ 	vlsins+v2coss 	2 _ 

[pv3v3 	2ueff% r3 	r3 	)+ 3(pk + ueffv'_v)] 

- 
1 	1 	avl 	v1 	1 	av2 	v2 + 	

- [pv2v1 - ri 	ueff(r a~2 	rl 	Q1 a~l 	
r2)~ 

V2 ueff 
_ 1 	ā~ + 	1 	a 	 1 	avl 

- 
vl 

- 
v2 

{ani 	[2, 	9., t2 a~2 	212,22,3 	 ueff~Q2 a-2 	ri 	r2)~ 

a 	 1 	av2 	2v1 	2 
+ 	[21 23(ueff(Q2 	+ 	- a32 	5 	r2) 	

Ica 
+ ueff

v.v))~ } 

_ 	
+
v 

) + _k  + —aVl pv + 	 ~
_ 

	

ueff
v.v ~i 	 11 	 eff 2 1 acl rl 	 3  

+ 
cos 	

_ _ 	vlsins+v2coss 	
2 - Cpv3v3 	2ueff r3~ 	( 	r3 	) + 3 ( pk+ueffv. )] 

1 	 1 	ayl 	vl 	1 	av2 	v2 
L - 	- 	

+ 	- pvlv2 	ueff v2;2 5e2 	ri 	r2)~ r2 	 Li aci 
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Dependent 

variable 
r0 s

4) 

73 ueff 

v sini 	 v cosa
- 

3 

{ 	 + 3r3 21 2'1,22,3 	 ) 	 r3 	)} all (Q2Q3ueff 	 a~2(~"1 Q3. eff 

1 
- r3 -lief [sine(pv lv3 

	
Q1 aEl) 

1 	 v3 	v3 + vos 	_ 	
+ (p v2v3 S 	ueff 2 22 ac 2) 	I'eff r3 

1 0 0 

E. lie 
2 v. 

DP
+ 	1 { 	

a 	 (E 	}] 
h at 	212'29-3 	

E
QQQ3 

ueff(1- —) 
all 	1 	h 	l 

—2 

	

Q1 Q3 	 1 	vi 
+ a 	~'2 	ueff(i - cfh)-5~2(E 211-1 

+ 	
a 	Q2Q3 	1 	1 	ak 	a 	i 3 	1 	1 	ak + (c~k - acl [ Q1 	ueff 	6 -) a_1 ~ 	ac2 [ Q2 	

Ti
eff (uk 	6h) a~2~ } 

k ueff e Gt - -FEE 
k 

E ueff c (C1 Gt - C2pE) + ',DI 0 . v 
E 
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Table 3.3 Source terms in the transformed co-ordinate system  

Dependent 

variable 
s
(0 

v 
1 	avl V 

1

a 	
(ueff( 	+-   —, r 	2   + Ql  	{f'[3 7 r 1 ) 

av 	71 	7211  1-(75k 	 } + ueffv'v)]+ 	z [12,3ueff( 	-r1 	
2 

172 	v 
1 + V V., - 2ueff( 22 	+ 3( 	+ + 	 r2 ) 	ueff V.v)] 

+ 
sins 	

_ _ 	1 sins+v2coss 	2 

2 	( 	) + 	( pk + r3 	[ pv3v3 	ueff 	r3 	 3 	ueff V ' 1)] 

 BV1 	v 	av 	v 
- 	Ti 	

+ Tr- C 	r2)] ri pv21 	ueff( 2 2 	r1 

a 	 1 	avl 	
- 

v1 	
- 

v2 _ 
v2 + {3 2 2 	21222'3—T  	[222.3 ueff(2 	~2 	rl 	r2)j 

1 
	372 	2V1 	2 	+ + 	 ] + 2[2123(ueff(— 	

r2) 	7(~c 	ueffV.v_)) 	} 

_ _ 	371 	v 
+ )+ 	+ 	~ v)

+ 2ueff [r  	 ueff_] r 	pv1 v1 	( 

v sins+v coss _ 
2 [ 

173713 
+ 

cor3S 	
2ueff( 1 	) + 3(Pk +ueffV.v)] r3 

1 	
1 	1 

(1
- - 	vlv2 	u 	r

1 	
r2)] 

av1 	
aV2 (2 2 tp 	eff r 	2 	1 + 1 	1 	2 
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Dependent 

variable 
Sc 

v3 
1 	a 	v3sins 	a 	v3cossfilm 

{ 	
) + 7177 	 2 -1-3 ueff 	r3 	) } 77177-`77' -2 	r3 

_ 	8v 
- r3 {si ns(pvl 	) + cos 13(pv 2v3 -ueff 	) 3 ueff 1 2 

T,'3 
+ ueff r3 } 

Fj sins 	1-r apr + Q 	+ aP - V 	Cosa 	V 9 	
1 	1 	22 a 2 

Q'Q' 	v2 

{ 	Qr 3 	, 0 	
~h -, ) 	(E  C  iiQ1   ueff(- 

t'Q' 	2 
v 

+ 2 [ R 
ueff(,- Qh) q2(E 	)] 

L 	(6k + 	2 	! 	ueff 	all i- 

+ 	
ak 

(ak 	] 2 2 ueff 	ah) 2   } 

k As table 3.2. 

e As table 3.2. 
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where the divergence of velocity and turbulence kinetic energy 

generation rate are given by: 

	

91/1  v 	av v 
v.v = (~r- + -) +(~.,--2r +?) + ~ (vsins+vcoss) 

Q1 a l 	r2 	 2 a`'2 	rl 	r3 	1 	2 

1 avi v2 2 	1 av2 vl 2 	vlsins+v2coss 2 

	

Gt = neff {2 1 	
+ r1 ) + 2 ( 

2 2 
+ r2 ) + 2 ( 	r3 

1 avl vi 	1 av2 v2 2 	1 aV3 V3sin3 2 
+ ( 2 rl + 2 C r2 ) + ( 2 ~2 	r3 	 ) 

+ (1.- 
—; v3coss 

)2} 
Q2 a72 	r3 
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Table 4.1 Comparison of the coefficients in the series  

for various finite-difference formulations of 

the energy equation pressure-work term  

Scheme b b2 b3 

Analytic -(Y-1 ) 2-(Y-1 )(y-2) - ~(Y-1 )(Y-2)(y-3) 

= -.4 = -.12 = -.064 

Watkins -(y-1) (y-1 )(y-2) - 7(Y3-4y2+7y-4) 

(1977) = -.4 = -.12 = -.176 

Present -(y-1) 2-(y-1)(y-2) - 7(2 y3-9y2+15y-8) 

study = -.4 = -.12 = -.106 
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Table 5.1 Computer Run Times for Test Cases 1 to 6  

Case Time-step No. of Grid Cells 	Computer Run Time (mins) 
i 

1 2°  784 	30/360°  cycle 

2 2°  784 23/ 	" 	" 

3 2°  1024 29/ " 	" 

4 3°  647 37/720°  (4 stroke) cycle 

5 3°  455 36/ 	" 	II 	
" 

6 1°  404 65/360° 	cycle 

The following cpu times relate to an IBM 360/195 running 

under 0S-MVT using the Extended H compiler at the highest level of 

optimisation (2) and in double precision for both real (R*8) 

and integer (I*4) variables. These times exclude compilation and 

loading but include the time for writing information at each crank-

angle step (for subsequent analysis and plotting) to magnetic tape; 

typically, this time is 3 to 6 mins per cycle. Run times are often 

quoted elsewhere for the CDC 7600; an approximate conversion of 

x IBM mins = .54 x CDC mins is applicable when the latter is using 

the FTN compiler at the highest optimisation level (2) (Curnow, 1976). 
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I 

1851CR 17,51CR 
19 ~ !2 , 

31 5 ~20°
J -24,0 - 

15 1CR 

40° r - 

21 	1 CR 

110 13 
40 6 

C-31,5-iLD 

1 
21 1 CR 21 	1 CR 

111 14 
-2/4)- 40° SO 

° 

21 1CR 21 1CR 
! 5 l 

2Q;_ 
(9_ ' 27° ! 12 

- 31.5 - 
21 1CR 

70° 

21 1  CR 
113 1 b 40° - 28.0 - 

21 1CR 

40° 

27 1 CR 

i 7 
-240 - 40° 114 7 ? / 7 

(a) 	(b) 	(c1 	(d) 24 1 CR 

Fig. 1.1 Various designs of re-entrant bowl piston  

(taken from Middlemiss, 1978) 



PLANE OF 
PROBE LOCATIONS 

3 

2 

I. INTAKE VALVE 
2. EXHAUST VALVE 

3. HOT- WIRE PROBE 

- 321 - 

EXHAUST 
PORT 

INLET 
PORT 

Fig. 2.1 Disc-chamber engine configuration used in the  

experiments of Molchanov (1953) 

Fig. 2.2 Disc-chamber engine configuration used in the  

experiments of Semenov (1958) 
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EXHAUST 	INLET 

PISTON 
AT TDC 

ē FROM PISTON 

PISTON 
AT BDC 

Fig. 2.3 Hemispherical combustion chamber engine configuration  

and measuring positions used by Arnold et al (1972) 

Fig. 2.4 Bowl-in-head engine configuration and measuring  

positions used by James (1972) 
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Fig. 2.5 Cross-section of the wedge chamber engine configuration  

used in the experiments of Dent and Salama (1975a, 1975b) 

Fig. 2.6 Cross-section of the Heron chamber engine configuration used  

in the experiments of Dent and Salama (1975a, 1975b) 
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Fig. 2.7 Sketch of the engine configuration and  

measuring positions used by Tindal et al (1974) 

PROBE 
SQUISH 
	

ACCESS 
VOLUME 

PISTON 

/ 
PRESSURE TRANSDUCER 

/ 	PROBE LOCATION 

/ 

/ 

Fig. 2.8 Sketch of the Wisconsin L-head engine used  

by Witze (1976a, 1976b) 
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cylinder wall 
`!./L/14/1 /1 /14/1 /1 L/ '. 

piston 

Fig. 2.11 Sketch of the cylinder-piston-bowl idealisation used  

for the squish studies of Fitzgeorge and Allison (1963) 

Fig. 2.12 Open-chamber piston bowls used in the experiments  

of Shimamoto and Akiyama (1970) 
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Fig. 2.13 Sketch of the squish velocity measuring apparatus  

used by Shimamoto and Akiyama (1970) 

Fig. 2.14 Cross-section of the piston used in the squish  

studies of Woods and Ghirlando (1975) 
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Fig. 2.15 Sketch of the axisymmetric engine used in the  

experiments of Witze (1976c) 
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Fig. 2.18 Sketch of the axisymetric engine used in the study of Morse et al (1978) 
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Fig. 2.25 Velocity predictions for the Honda CVCC prechamber 

engine at TDC by Bon; (1978) 
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Fig. 3.1 Alternative computing meshes for piston-bowls  
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Fig. 3.2 The selected computational grid, showing curvilinear- 
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r3  ■ ■ 

P 

C3-e. 

DIRECTION 2 

REFERENCE 

PLANE 

SYMMETRY 
	> AXIS 

DIRECTION 3 

line of 

constant jj and 2 

1 
C.) .p N 
1 

ra
di

a l
 

di
s t

a n
ce

  (
r)

  

1 

A 

DIRECTION 1 

rj 

axial distance'(z) 

Fig. 3.3 The axisymmetric curvilinear-orthogonal co-ordinate system 



- 343 - 

TIME ( t) 

Fig. 3.4 Components of $ (instantaneous 0 for a cyclic process  

with cycle-to-cycle variations  



'scalar' control 

volume 

control volume 

- 344 - 

Axial distance (z) 

Fig. 4.1 Computational grid showing scalar, vl   and v2  

control volumes and notation  



50 75 25 

0 	O without overall pressure adjustment scheme 

with x " 	
I. .. " 

(o 
m 

a)   a) -2-  
N N 
m 
E 
0 

0 

-3- 

-4 

I 

- 345 - 

No. of iterations 

Fig. 4.2 Variation of mass residual with number of iterations  

with and without overall pressure adjustment scheme  



-346- 

cylinder wall 

cylinder 

head 

piston 

MID 

(a) Flat-top piston  

Inlet (exhaust 

boundary conditions 

cylinder wall 

piston 

cylinder 

head 

(b) Bowl-in-piston  

Fig. 4.3 Computational grids used for the simulation of the  

experiments of Morse et al (1978)  



- 347 - 

cylinder wall 

cylinder 

head 
	

piston 

Inlet/exhaust 

boundary 
conditions 

valve 

(a) Valve open, near BDC  

cylinder wall 

cylinder 
	

piston 

head 

(b) Valve closed, near TDC  

Fig. 4.4 Computational grid used for the simulation of the experiments  

of Witze (1976c), (Flat cylinder head configuration)  



c 

h 

Inlet/exhaus 
boundary 
conditions '--... 

- 348 -

cyl inder 

ylinder 
ead 

pi ston 

I 
t 

. - "- '- - -
(a) Valve open, near BOC 

cy1 inder wall 

cylinder 
head 

p iston 

. .. - -
(b) Valve closed, near TOC 

Fig. 4.5 Computational grid used for the simulation of the 

experiments of Witze (1976c), (Bowl-in-head configuration) 



- 349 - 

*---• 12° time step 

• — -e 6° time step 

3° time step 

   

I : ;'__ 	` . 
mr w-

~--S__ -__ 

Non-dimensional time 

•2 5 	 .75 	 •1 

j  

I % 	 A--•" 	 ....sr - 

s 	 x' 
1 1 	.P 
`•0 --- 

Fig. 4.6 Variation of the coefficient (-1)m C2  (equation 4.76)  

over one cycle  



5 

4 

3 

2 

1 

- 2 

- 350 - 

7 
f 

*-4 12°  time step 
a—• 6°  time step 

3°  time step 

6- I 
I 

I 

Non- dimensional  time 

-3 

- 4 

- 5 

-6 

-7 

1 

I 

Fig. 4.7 Solution of equation 4.74 over one cycle  



- 351 - 

--0 

i 	 
Expanding/contracting 

--. 

N1 	 N2  

Translating 

(a) One-dimensional 'hybrid' grid  

-r 

N4  

	H N1 

Expanding/contracting 

N2  

Translating 

(b) Two-dimensional 'piston-bowl' grid  

Fig. 4.8 Computational grids used for the 1-d and 2-d  

numerical assessment  



0 
1• 

3 

2 

1 

Non-dimensional time 

x---x 2°  
._0 10 

.50  

- 352 - 

Fig. 4.9 Effect of time-step on velocity error (solution  

of momentum equation only with implicit  

differencing; grid -N1=N2=6)  
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Fig. 4.10 Effect of grid size on velocity error (solution of  

momentum equation only with implicit differencing; 

time step -1°)  
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Fig. 4.11 Effect of time-step on velocity error (solution of  

momentum equation only with time-centred differencing; 

grid --N-1 =N2=  6)  
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Fig. 4.13 Effect of time-step on velocity error (implicit momentum 

and continuity equation differencing; grid Ni=N2=6)  
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momentum and continuity equation differencing; 

grid - N1 =N2=6) 



2- 

N1 =N2=3 

N1 =N2=6 

N1 =N2=12 

-25 	 •5 	 •75 1• 
0 

Non - dimensional time 

- 358 - 
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momentum and continuity equation differencing;  
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Fig. 4.17 Effect of time-step on velocity error (implicit  

momentum and time-centred continuity equation  

differencing; grid - N1=N2=6)  
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Fig. 5.5 Pleasured (---) and calculated (— ) mean and turbulent axial velocities at 36° for case 1  
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Fig. 5.28 Computational grid used for the simulation of the  

experiments of Dao et al (1973)  
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Fig. 6.2 Computational grids used for the geometry of fig.  6.1 
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Fig. 6.3 Computational grid used for the 1.11 bowl calculations  

Fig. 6.4 Computational grid used for the 1.2 bowl calculations  
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Fig. 6.5 Computational grid used for the 1.12 bowl calculations  

Fig. 6.6 Computational grid used for the 1.3 bowl calculations  
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Fig. 6.7 Computational grid used for the 1.15 bowl calculations  
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(a) Predicted flow structure at 900 for case 1 of chapter 5 
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(b) Suggested grid for the flow structure of (a) showing 

regions of local refinement 

Fig. 7.2 Representation of local grid refinement 
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Fig. 7.3 Offset piston-bowl geometry showing computational grid 
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Fig. 7.4 Offset valve geometry showing computational grid 
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Fig. 7.5 Uniflow-scavenge two-stroke configuration showing 

proposed grid arrangement 
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Fig. 7.5 Uniflow-scavenge two-stroke configuration showing 

proposed grid arrangement 
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SWIRL ISO-VELS 
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Fig. 7.6 Calculated fuel spray mixing at TDC using partially-

coupled solution method (from Gosman and Johns, 1980)  
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Fig. 7.7 Calculated fuel spray mixing at TDe using fully

coupled solution method (from Gosman and Johns, 1980) 




