39 research outputs found

    Early Career Members at the ERS Lung Science Conference 2020: metabolic alterations in lung ageing and disease

    Get PDF
    Every year, the European Respiratory Society (ERS) organises the Lung Science Conference (LSC) in Estoril, Portugal, to discuss basic and translational science. The topic of the LSC 2020 was “Metabolic alterations in lung ageing and disease”. In addition to an outstanding scientific programme, the LSC provides excellent opportunities for career development and inclusion of Early Career Members (ECMs). All scientific and poster sessions are chaired by an ECM who is paired with a senior faculty member to allow ECMs to become acquainted with session chairing. In addition, 40 travel bursaries are made available to abstract authors and all bursary recipients are invited to take part in a mentorship lunch. Moreover, there is a session organised by the Early Career Members Committee (ECMC) dedicated to career development. Here, we describe the scientific highlights of LSC 2020 for those who could not attend. The ERS presents several awards at the LSC and here we will highlight all winners of the LSC 2020 awards. The five highest ranked abstracts from ECMs are presented during the Young investigator session. Patricia Ogger (UK) was presented with the William MacNee Award for the best presentation in this session. Several abstracts were selected for programmed oral presentations and Renata Jurkowska (UK) was presented with the inaugural Geoffrey Laurent Award for the best oral presentation. Moreover, the organisers presented eight Distinguished Poster awards to Anne-Sophie Lamort (Germany), Julia Frankenberg Garcia (UK), Johnatas Silva (UK), Pauline Esteves (France), Claudio Bussi (UK), Elodie Picard (France), Felix Ritzmann (Germany) and Alen Faiz (Australia) for their excellent contributions during the poster session

    Early and late acute lung injury and their association with distal organ damage in murine malaria

    Get PDF
    AbstractSevere malaria is characterised by cerebral oedema, acute lung injury (ALI) and multiple organ dysfunctions, however, the mechanisms of lung and distal organ damage need to be better clarified. Ninety-six C57BL/6 mice were injected intraperitoneally with 5×106 Plasmodium berghei ANKA-infected erythrocytes or saline. At day 1, Plasmodium berghei infected mice presented greater number of areas with alveolar collapse, neutrophil infiltration and interstitial oedema associated with lung mechanics impairment, which was more severe at day 1 than day 5. Lung tumour necrosis factor-α and chemokine (C-X-C motif) ligand 1 levels were higher at day 5 compared to day 1. Lung damage occurred in parallel with distal organ injury at day 1; nevertheless, lung inflammation and the presence of malarial pigment in distal organs were more evident at day 5. In conclusion, ALI develops prior to the onset of cerebral malaria symptoms. Later during the course of infection, the established systemic inflammatory response increases distal organ damage

    Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS

    No full text
    Alveolar epithelial-capillary barrier disruption is a hallmark of acute respiratory distress syndrome (ARDS). Contribution of mitochondrial dysfunction to the compromised alveolar-capillary barrier in ARDS remains unclear. Mesenchymal stromal cells-derived extracellular vesicles (MSC-EVs) are considered as a cell-free therapy for ARDS. Mitochondrial transfer was shown to be important for the therapeutic effects of MSCs and MSC-EVs. Here we investigated the contribution of mitochondrial dysfunction to the injury of alveolar epithelial and endothelial barriers in ARDS and the ability of MSC-EVs to modulate alveolar-capillary barrier integrity through mitochondrial transfer.Primary human small airway epithelial and pulmonary microvascular endothelial cells and human precision cut lung slices (PCLSs) were stimulated with endotoxin or plasma samples from patients with ARDS and treated with MSC-EVs, barrier properties and mitochondrial functions were evaluated. Lipopolysaccharide (LPS)-injured mice were treated with MSC-EVs and degree of lung injury and mitochondrial respiration of the lung tissue were assessed.Inflammatory stimulation resulted in increased permeability coupled with pronounced mitochondrial dysfunction in both types of primary cells and PCLSs. Extracellular vesicles derived from normal MSCs restored barrier integrity and normal levels of oxidative phosphorylation while an extracellular vesicles preparation which did not contain mitochondria was not effective. In vivo, presence of mitochondria was critical for extracellular vesicles ability to reduce lung injury and restore mitochondrial respiration in the lung tissue.In the ARDS environment, MSC-EVs improve alveolar-capillary barrier properties through restoration of mitochondrial functions at least partially via mitochondrial transfer

    Therapeutic effect of lipoxin A4 in malaria‐induced acute lung injury

    No full text
    Acute lung injury (ALI) models are characterized by neutrophil accumulation, tissue damage, alteration of the alveolar capillary membrane, and physiological dysfunction. Lipoxin A4 (LXA4) is an anti-inflammatory eicosanoid that was demonstrated to attenuate lipopolysaccharide-induced ALI. Experimental models of severe malaria can be associated with lung injury. However, to date, a putative effect of LXA4 on malaria (M)-induced ALI has not been addressed. In this study, we evaluated whether LXA4 exerts an effect on M-ALI. Male C57BL/6 mice were randomly assigned to the following five groups: noninfected; saline-treated Plasmodium berghei-infected; LXA4-pretreated P. berghei-infected (LXA4 administered 1 h before infection and daily, from days 0 to 5 postinfection), LXA4- and LXA4 receptor antagonist BOC-2-pretreated P. berghei-infected; and LXA4-posttreated P. berghei-infected (LXA4 administered from days 3 to 5 postinfection). By day 6, pretreatment or posttreatment with LXA4 ameliorate lung mechanic dysfunction reduced alveolar collapse, thickening and interstitial edema; impaired neutrophil accumulation in the pulmonary tissue and blood; and reduced the systemic production of CXCL1. Additionally, in vitro treatment with LXA4 prevented neutrophils from migrating toward plasma collected from P. berghei-infected mice. LXA4 also impaired neutrophil cytoskeleton remodeling by inhibiting F-actin polarization. Ex vivo analysis showed that neutrophils from pretreated and posttreated mice were unable to migrate. In conclusion, we demonstrated that LXA4 exerted therapeutic effects in malaria-induced ALI by inhibiting lung dysfunction, tissue injury, and neutrophil accumulation in lung as well as in peripheral blood. Furthermore, LXA4 impaired the migratory ability of P. berghei-infected mice neutrophils

    Human mesenchymal stromal cells inhibit Mycobacterium avium replication in clinically relevant models of lung infection

    No full text
    Introduction: Novel therapeutic strategies are urgently needed for Mycobacterium avium complex pulmonary disease (MAC-PD). Human mesenchymal stromal cells (MSCs) can directly inhibit MAC growth, but their effect on intracellular bacilli is unknown. We investigated the ability of human MSCs to reduce bacterial replication and inflammation in MAC-infected macrophages and in a murine model of MAC-PD. Methods: Human monocyte-derived macrophages (MDMs) were infected with M. avium Chester strain and treated with human bone marrow-derived MSCs. Intracellular and extracellular colony-forming units (CFUs) were counted at 72 hours. Six-week-old female balb/c mice were infected by nebulisation of M. avium Chester. Mice were treated with 1×106 intravenous human MSCs or saline control at 21 and 28 days post-infection. Lungs, liver and spleen were harvested 42 days post-infection for bacterial counts. Cytokines were quantified by ELISA. Results: MSCs reduced intracellular bacteria in MDMs over 72 hours (median 35% reduction, p=0.027). MSC treatment increased extracellular concentrations of prostaglandin E2 (PGE2) (median 10.1-fold rise, p=0.002) and reduced tumour necrosis factor-α (median 28% reduction, p=0.025). Blocking MSC PGE2 production by cyclo-oxygenase-2 (COX-2) inhibition with celecoxib abrogated the antimicrobial effect, while this was restored by adding exogenous PGE2. MSC-treated mice had lower pulmonary CFUs (median 18% reduction, p=0.012), but no significant change in spleen or liver CFUs compared with controls. Conclusion: MSCs can modulate inflammation and reduce intracellular M. avium growth in human macrophages via COX-2/PGE2 signalling and inhibit pulmonary bacterial replication in a murine model of chronic MAC-PD.</p

    Intratracheal Instillation of Lipopolymeric Vectors and the Effect on Mice Lung Physiology

    No full text
    Background/Aims: The current study compared the effects of intratracheal administration of different lipopolymeric vectors on lung function and histology in normal mice. Methods: Forty-eight BALB/c mice were randomly divided into 8 groups (6/group). All animals received intratracheal instillation of the following suspensions: polymerized [(A) 1,2-dimyristoyl-sn-glycero-3- phosphocholine (DMPC):1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3- phosphocholine (DC8,9PC):1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), (B) DMPC:DC8,9PC:stearylamine (SA), (C) DMPC:DC8,9PC:myristoylcholine chloride (MCl)]; nonpolymerized [(D) DMPC:DC8,9PC:DOTAP, (E) DMPC:DC8,9PC:SA, (F) DMPC:DC8,9PC:MCl] together with plasmid DNA; vehicle (control), and pDsRed2-N1 plasmid DNA (DNA). At 24 h, the survival rate, lung mechanics (resistive and viscoelastic pressure, static elastance) and morphometry were analyzed. Results: The survival rate was 50% in D, 40% in E and F, and 100% in the CTRL, DNA, A, B and C groups. Animals from groups D, E, and F that died presented diffuse pulmonary hemorrhagic capillaritis. Lung mechanics, the fraction of normal and collapsed alveoli, as well as the number of polymorphonuclear and mononuclear cells in lung tissue were similar in all surviving mice. Conclusion: Intratracheal instillation of polymerized particles is safe compared with nonpolymerized formulations and may be used for future gene/drug therapy.Fil: Xisto, Debora G.. Universidade Federal do Rio de Janeiro; BrasilFil: Temprana, Carlos Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Biomembranas; ArgentinaFil: Martini, Sabrina V.. Universidade Federal do Rio de Janeiro; BrasilFil: Silva, Adriana L.. Universidade Federal do Rio de Janeiro; BrasilFil: Abreu, Soraia G.. Universidade Federal do Rio de Janeiro; BrasilFil: Silva, Johnatas D.. Universidade Federal do Rio de Janeiro; BrasilFil: Crosseti, Julia. Universidade Federal do Rio de Janeiro; BrasilFil: Rocco, Patricia R. M.. Universidade Federal do Rio de Janeiro; BrasilFil: Alonso, Silvia del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Biomembranas; ArgentinaFil: Morales, Marcelo M.. Universidade Federal do Rio de Janeiro; Brasi

    Therapeutic effect of Lipoxin A 4

    No full text
    Acute lung injury (ALI) models are characterized by neutrophil accumulation, tissue damage, alteration of the alveolar capillary membrane, and physiological dysfunction. Lipoxin A4 (LXA4) is an anti-inflammatory eicosanoid that was demonstrated to attenuate lipopolysaccharide-induced ALI. Experimental models of severe malaria can be associated with lung injury. However, to date, a putative effect of LXA4 on malaria (M)-induced ALI has not been addressed. In this study, we evaluated whether LXA4 exerts an effect on M-ALI. Male C57BL/6 mice were randomly assigned to the following five groups: noninfected; saline-treated Plasmodium berghei-infected; LXA4-pretreated P. berghei-infected (LXA4 administered 1 h before infection and daily, from days 0 to 5 postinfection), LXA4- and LXA4 receptor antagonist BOC-2-pretreated P. berghei-infected; and LXA4-posttreated P. berghei-infected (LXA4 administered from days 3 to 5 postinfection). By day 6, pretreatment or posttreatment with LXA4 ameliorate lung mechanic dysfunction reduced alveolar collapse, thickening and interstitial edema; impaired neutrophil accumulation in the pulmonary tissue and blood; and reduced the systemic production of CXCL1. Additionally, in vitro treatment with LXA4 prevented neutrophils from migrating toward plasma collected from P. berghei-infected mice. LXA4 also impaired neutrophil cytoskeleton remodeling by inhibiting F-actin polarization. Ex vivo analysis showed that neutrophils from pretreated and posttreated mice were unable to migrate. In conclusion, we demonstrated that LXA4 exerted therapeutic effects in malaria-induced ALI by inhibiting lung dysfunction, tissue injury, and neutrophil accumulation in lung as well as in peripheral blood. Furthermore, LXA4 impaired the migratory ability of P. berghei-infected mice neutrophils

    Mesenchymal stromal cells-derived extracellular vesicles reprogramme macrophages in ARDS models through the miR-181a-5p-PTEN-pSTAT5-SOCS1 axis

    No full text
    Rationale A better understanding of the mechanism of action of mesenchymal stromal cells (MSCs) and their extracellular vesicles (EVs) is needed to support their use as novel therapies for acute respiratory distress syndrome (ARDS). Macrophages are important mediators of ARDS inflammatory response. Suppressor of cytokine signalling (SOCS) proteins are key regulators of the macrophage phenotype switch. We therefore investigated whether SOCS proteins are involved in mediation of the MSC effect on human macrophage reprogramming.Methods Human monocyte-derived macrophages (MDMs) were stimulated with lipopolysaccharide (LPS) or plasma samples from patients with ARDS (these samples were previously classified into hypo-inflammatory and hyper-inflammatory phenotype) and treated with MSC conditioned medium (CM) or EVs. Protein expression was measured by Western blot. EV micro RNA (miRNA) content was determined by miRNA sequencing. In vivo: LPS-injured C57BL/6 mice were given EVs isolated from MSCs in which miR-181a had been silenced by miRNA inhibitor or overexpressed using miRNA mimic.Results EVs were the key component of MSC CM responsible for anti-inflammatory modulation of human macrophages. EVs significantly reduced secretion of tumour necrosis factor-α and interleukin-8 by LPS-stimulated or ARDS plasma-stimulated MDMs and this was dependent on SOCS1. Transfer of miR-181a in EVs downregulated phosphatase and tensin homolog (PTEN) and subsequently activated phosphorylated signal transducer and activator of transcription 5 (pSTAT5) leading to upregulation of SOCS1 in macrophages. In vivo, EVs alleviated lung injury and upregulated pSTAT5 and SOCS1 expression in alveolar macrophages in a miR181-dependent manner. Overexpression of miR-181a in MSCs significantly enhanced therapeutic efficacy of EVs in this model.Conclusion miR-181a-PTEN-pSTAT5-SOCS1 axis is a novel pathway responsible for immunomodulatory effect of MSC EVs in ARDS
    corecore