250 research outputs found

    Successional change in phosphorus stoichiometry explains the inverse relationship between herbivory and lupin density on Mount St. Helens

    Get PDF
    Background: The average nitrogen-to-phosphorus ratio (N:P) of insect herbivores is less than that of leaves, suggesting that P may mediate plant-insect interactions more often than appreciated. We investigated whether succession-related heterogeneity in N and P stoichiometry influences herbivore performance on N-fixing lupin (Lupinus lepidus) colonizing primary successional volcanic surfaces, where the abundances of several specialist lepidopteran herbivores are inversely related to lupin density and are known to alter lupin colonization dynamics. We examined larval performance in response to leaf nutritional characteristics using gelechiid and pyralid leaf-tiers, and a noctuid leaf-cutter. Methodology/Principal Findings: We conducted four studies. First, growth of larvae raised on wild-collected leaves responded positively to leaf %P and negatively to leaf carbon (%C), but there was no effect of %N or quinolizidine alkaloids (QAs). Noctuid survival was also positively related to %P. Second, we raised gelechiid larvae on greenhouse-grown lupins with factorial manipulation of competitors and soil N and P. In the presence of competition, larval mass was highest at intermediate leaf N:P and high %P. Third, survival of gelechiid larvae placed on lupins in high-density patches was greater when plant competitors were removed than on controls. Fourth, surveys of field-collected leaves in 2000, 2002, and 2003 indicated that both %P and %N were generally greater in plants from low-density areas. QAs in plants from low-density areas were equal to or higher than QAs in high-density areas. Conclusions/Significance: Our results demonstrate that declines in lupin P content under competitive conditions are associated with decreased larval growth and survival sufficient to cause the observed negative relationship between herbivore abundance and host density. The results support the theoretical finding that declines in stoichiometric resource quality (caused here by succession) have the potential to cause a decrease in consumer abundance despite very dense quantities of the resource. © 2009 Apple et al

    The Galactic Magnetic Field's Effect in Star-Forming Region

    Get PDF
    We investigate the effect of the Milky Way's magnetic field in star forming regions using archived 350 micron polarization data on 52 Galactic star formation regions from the Hertz polarimeter module. The polarization angles and percentages for individual telescope beams were combined in order to produce a large-scale average for each source and for complexes of sources. In more than 80% of the sources, we find a meaningful mean magnetic field direction, implying the existence of an ordered magnetic field component at the scale of these sources. The average polarization angles were analyzed with respect to the Galactic coordinates in order to test for correlations between polarization percentage, polarization angle, intensity, and Galactic location. No correlation was found, which suggests that the magnetic field in dense molecular clouds is decoupled from the large-scale Galactic magnetic field. Finally, we show that the magnetic field directions in the complexes are consistent with a random distribution on the sky

    A massive cluster of Red Supergiants at the base of the Scutum-Crux arm

    Full text link
    We report on the unprecedented Red Supergiant (RSG) population of a massive young cluster, located at the base of the Scutum-Crux Galactic arm. We identify candidate cluster RSGs based on {\it 2MASS} photometry and medium resolution spectroscopy. With follow-up high-resolution spectroscopy, we use CO-bandhead equivalent width and high-precision radial velocity measurements to identify a core grouping of 26 physically-associated RSGs -- the largest such cluster known to-date. Using the stars' velocity dispersion, and their inferred luminosities in conjuction with evolutionary models, we argue that the cluster has an initial mass of \sim40,000\msun, and is therefore among the most massive in the galaxy. Further, the cluster is only a few hundred parsecs away from the cluster of 14 RSGs recently reported by Figer et al (2006). These two RSG clusters represent 20% of all known RSGs in the Galaxy, and now offer the unique opportunity to study the pre-supernova evolution of massive stars, and the Blue- to Red-Supergiant ratio at uniform metallicity. We use GLIMPSE, MIPSGAL and MAGPIS survey data to identify several objects in the field of the larger cluster which seem to be indicative of recent region-wide starburst activity at the point where the Scutum-Crux arm intercepts the Galactic bulge. Future abundance studies of these clusters will therefore permit the study of the chemical evolution and metallicity gradient of the Galaxy in the region where the disk meets the bulge.Comment: 49 pages, 22 figures. Accepted for publication in ApJ. Version with hi-res figures can be found at http://www.cis.rit.edu/~bxdpci/RSGC2.pd

    Wood/bark adhesion and methods of reducing adhesion in hardwood species. Project 2929, report one : a progress report to Members of Group Project 2929.

    Get PDF
    "December 21, 1970.""The Institute of Paper Chemistry ... Dean W. Einspahr, John D. Hankey, W. A. Wink, Miles K. Benson, and John W. Swanson.

    Triggered Star Formation in a Double Shell near W51A

    Full text link
    We present Heinrich Hertz Telescope CO observations of the shell structure near the active star-forming complex W51A to investigate the process of star formation triggered by the expansion of an HII region. The CO observations confirm that dense molecular material has been collected along the shell detected in Spitzer IRAC images. The CO distribution shows that the shell is blown out toward a lower density region to the northwest. Total hydrogen column density around the shell is high enough to form new stars. We find two CO condensations with the same central velocity of 59 km/s to the east and north along the edge of the IRAC shell. We identify two YSOs in early evolutionary stages (Stage 0/I) within the densest molecular condensation. From the CO kinematics, we find that the HII region is currently expanding with a velocity of 3.4 km/s, implying that the shell's expansion age is ~1 Myr. This timescale is in good agreement with numerical simulations of the expansion of the HII region (Hosokawa et al. 2006). We conclude that the star formation on the border of the shell is triggered by the expansion of the HII region.Comment: 9 pages, 10 figures, accepted for publication in Ap

    Uncovering the Signaling Landscape Controlling Breast Cancer Cell Migration Identifies Novel Metastasis Driver Genes

    Get PDF
    Ttriple-negative breast cancer (TNBC) is an aggressive and highly metastatic breast cancer subtype. Enhanced TNBC cell motility is a prerequisite of TNBC cell dissemination. Here, we apply an imaging-based RNAi phenotypic cell migration screen using two highly motile TNBC cell lines (Hs578T and MDA-MB-231) to provide a repository of signaling determinants that functionally drive TNBC cell motility. We have screened ~4,200 target genes individually and discovered 133 and 113 migratory modulators of Hs578T and MDA-MB-231, respectively, which are linked to signaling networks predictive for breast cancer progression. The splicing factors PRPF4B and BUD31 and the transcription factor BPTF are essential for cancer cell migration, amplified in human primary breast tumors and associated with metastasis-free survival. Depletion of PRPF4B, BUD31 and BPTF causes primarily down regulation of genes involved in focal adhesion and ECM-interaction pathways. PRPF4B is essential for TNBC metastasis formation in vivo, making PRPF4B a candidate for further drug developmen

    The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists

    Get PDF
    Scientists are dedicating more attention to replication efforts. While the scientific utility of replications is unquestionable, the impact of failed replication efforts and the discussions surrounding them deserve more attention. Specifically, the debates about failed replications on social media have led to worry, in some scientists, regarding reputation. In order to gain data-informed insights into these issues, we collected data from 281 published scientists. We assessed whether scientists overestimate the negative reputational effects of a failed replication in a scenario-based study. Second, we assessed the reputational consequences of admitting wrongness (versus not) as an original scientist of an effect that has failed to replicate. Our data suggests that scientists overestimate the negative reputational impact of a hypothetical failed replication effort. We also show that admitting wrongness about a non-replicated finding is less harmful to one’s reputation than not admitting. Finally, we discovered a hint of evidence that feelings about the replication movement can be affected by whether replication efforts are aimed one’s own work versus the work of another. Given these findings, we then present potential ways forward in these discussions

    Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens

    Get PDF
    The average nitrogen-to-phosphorus ratio (N?P) of insect herbivores is less than that of leaves, suggesting that P may mediate plant-insect interactions more often than appreciated. We investigated whether succession-related heterogeneity in N and P stoichiometry influences herbivore performance on N-fixing lupin (Lupinus lepidus) colonizing primary successional volcanic surfaces, where the abundances of several specialist lepidopteran herbivores are inversely related to lupin density and are known to alter lupin colonization dynamics. We examined larval performance in response to leaf nutritional characteristics using gelechiid and pyralid leaf-tiers, and a noctuid leaf-cutter.Apple JL, Wink M, Wills SE, Bishop JG (2009) Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens. PLoS ONE 4(11): e7807. doi:10.1371/journal.pone.000780
    corecore