322 research outputs found

    Overview of microbial NGS for clinical and public health microbiology

    Get PDF
    Next-generation sequencing (NGS) has revolutionised the way we perform clinical and public health microbiology. This technology combined with the bioinformatics research field has led to a deeper understanding of the mechanisms involved in the pathogenesis of clinical infections, antimicrobial-resistant determination and dissemination of microorganisms inside the hospital, in the community, in animals and the environment. New approaches, like machine-learning methods, will even further potentiate the understanding of the information that is generated through NGS. In this book chapter, we aim to show the possibilities for NGS, including whole-genome sequencing (WGS) and metagenomics, in the fields of clinical and public health microbiology and speculate on its future importance.</p

    Complete Genome Sequences of Two Methicillin-Resistant Staphylococcus haemolyticus Isolates of Multilocus Sequence Type 25, First Detected by Shotgun Metagenomics

    Get PDF
    The emergence of nosocomial infections by multidrug-resistantStaphylococcus haemolyticusisolates has been reported in several European countries. Here, we report the first two complete genome sequences ofS. haemolyticussequence type 25 (ST25) isolates 83131A and 83131B. Both isolates were isolated from the same clinical sample and were first identified through shotgun metagenomics

    Complete Genome Sequences of Two Methicillin-Resistant Staphylococcus haemolyticus Isolates of Multilocus Sequence Type 25, First Detected by Shotgun Metagenomics

    Get PDF
    The emergence of nosocomial infections by multidrug-resistantStaphylococcus haemolyticusisolates has been reported in several European countries. Here, we report the first two complete genome sequences ofS. haemolyticussequence type 25 (ST25) isolates 83131A and 83131B. Both isolates were isolated from the same clinical sample and were first identified through shotgun metagenomics

    Future potential of metagenomics in clinical laboratories

    Get PDF
    INTRODUCTION: Rapid and sensitive diagnostic strategies are necessary for patient care and public health. Most of the current conventional microbiological assays detect only a restricted panel of pathogens at a time or require a microbe to be successfully cultured from a sample. Clinical metagenomics next-generation sequencing (mNGS) has the potential to unbiasedly detect all pathogens in a sample, increasing the sensitivity for detection and enabling the discovery of unknown infectious agents. AREAS COVERED: High expectations have been built around mNGS; however, this technique is far from widely available. This review highlights the advances and currently available options in terms of costs, turnaround time, sensitivity, specificity, validation, and reproducibility of mNGS as a diagnostic tool in clinical microbiology laboratories. EXPERT OPINION: The need for a novel diagnostic tool to increase the sensitivity of microbial diagnostics is clear. mNGS has the potential to revolutionise clinical microbiology. However, its role as a diagnostic tool has yet to be widely established, which is crucial for successfully implementing the technique. A clear definition of diagnostic algorithms that include mNGS is vital to show clinical utility. Similarly to real-time PCR, mNGS will one day become a vital tool in any testing algorithm

    Enterococcus faecium:from microbiological insights to practical recommendations for infection control and diagnostics

    Get PDF
    Early in its evolution, Enterococcus faecium acquired traits that allowed it to become a successful nosocomial pathogen. E. faecium inherent tenacity to build resistance to antibiotics and environmental stressors that allows the species to thrive in hospital environments. The continual wide use of antibiotics in medicine has been an important driver in the evolution of E. faecium becoming a highly proficient hospital pathogen.For successful prevention and reduction of nosocomial infections with vancomycin resistant E. faecium (VREfm), it is essential to focus on reducing VREfm carriage and spread. The aim of this review is to incorporate microbiological insights of E. faecium into practical infection control recommendations, to reduce the spread of hospital-acquired VREfm (carriage and infections). The spread of VREfm can be controlled by intensified cleaning procedures, antibiotic stewardship, rapid screening of VREfm carriage focused on high-risk populations, and identification of transmission routes through accurate detection and typing methods in outbreak situations. Further, for successful management of E. faecium, continual innovation in the fields of diagnostics, treatment, and eradication is necessary

    New Topoisomerase Inhibitors:Evaluating the Potency of Gepotidacin and Zoliflodacin in Fluoroquinolone-Resistant Escherichia coli upon tolC Inactivation and Differentiating Their Efflux Pump Substrate Nature

    Get PDF
    Inactivating tolC in multidrug-resistant Escherichia coli with differing sequence types and quinolone resistance-determining mutations reveals remarkably potentiated activity of the first-in-class topoisomerase inhibitors gepotidacin and zoliflodacin. Differences between both structurally unrelated compounds in comparison to fluoroquinolones regarding the selectivity of E. coli RND (resistance-nodulation-cell division)-type transporters, efflux inhibitors, and AcrB porter domain mutations were demonstrated. The findings should reinforce efforts to develop efflux-bypassing drugs and provide AcrB targets with critical relevance for this purpose

    MRSA Prevalence and Associated Risk Factors among Health-Care Workers in Non-outbreak Situations in the Dutch-German EUREGIO

    Get PDF
    Preventing the spread of methicillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities is a major infection control target. However, only a few studies have assessed the potential role of healthcare workers (HCWs) for MRSA dissemination. To investigate the MRSA prevalence and the risk factors for MRSA colonization among HCWs, nasopharyngeal swabs were taken between June 2010 and January 2011 from 726 employees from nine acute care hospitals with different care levels within the German part of a Dutch-German border region (EUREGIO). The isolated MRSA strains were investigated using spa typing. The overall MRSA prevalence among HCWs in a non-outbreak situation was 4.6% (33 of 726), and was higher in nurses (5.6 %, 29 of 514) than in physicians (1.2%, 1 of 83). Possible risk factors associated with MRSA colonization were a known history of MRSA carriage and the presence of acne. Intensive contact with patients may facilitate MRSA transmission between patients and HCWs. Furthermore, an accumulation of risk factors was accompanied by an increased MRSA prevalence in HCW

    Whole-Genome Sequences of Two NDM-1-Producing Pseudomonas aeruginosa Strains Isolated in a Clinical Setting in Albania in 2018

    Get PDF
    Isolation of metallo-β-lactamase-producing, carbapenem-resistant, Pseudomonas aeruginosa strains is increasingly being documented worldwide; their presence constitutes a public health threat. Here, we report draft genome sequences of two New Delhi metallo-β-lactamase-1-producing, multidrug-resistant, P. aeruginosa strains of sequence type 235 that were isolated from the surgical wound of two patients hospitalized in the same ward

    Complete Coding Sequences of Five Dengue Virus Type 2 Clinical Isolates from Venezuela Obtained through Shotgun Metagenomics

    Get PDF
    Dengue is a disease endemic in Latin American countries, like Venezuela, and has become one of the most important public health problems. We report five complete coding sequences of dengue virus serotype 2 (DENV-2) isolated from DENV-infected patients in Venezuela. Phylogenetic analysis placed the isolates within the American/Asian genotype
    corecore