1,499 research outputs found
Development of a Hard X-Ray Polarimeter for Astrophysics
We have been developing a Compton scatter polarimeter for measuring the linear polarization of hard X-rays (100-300 keV) from astrophysical sources. A laboratory prototype polarimeter has been used to successfully demonstrate the reliability of our Monte Carlo simulation code and to demonstrate our ability to generate a polarized photon source in the lab. Our design concept places a self-containedpolarimeter module on the front-end of a a 5-inch position sensitive PMT (PSPMT). We are currently working on the fabrication of a science model based on this PSPMT concept. Although the emphasis of our development effort is towards measuring hard X-rays from solar flares, our design has the advantage that it is sensitive over a rather large field-of-view (\u3e1 steradian), a feature that makes it especially attractive for Îł-ray burst studie
Radiation Damage and Activation from Proton Irradiation of Advanced Scintillators
We present results from a proton accelerator beam test to measure radiation damage and activation in advanced scintillator materials. Samples of LaBr3:Ce and LaCl3:Ce were exposed to protons from 40-250 MeV at the Proton Irradiation Facility of the Paul Scherrer Institute in Switzerland. Twelve energy bands were used to simulate the spectrum of the South Atlantic Anomaly (SAA), with different samples exposed to the equivalent of 4 months, 1 year, and 5 years of SAA passage. No significant decrease in light output was found due to radiation damage, indicating that these new scintillator materials are radiation tolerant. High-resolution spectra of the samples were obtained before and after irradiation with a Germanium spectrometer to study activation. We present a detailed analysis of these spectra and a discussion of the suitability of these scintillator materials for detectors in future space missions
Development of a hard X-ray polarimeter for astrophysics
We have been developing a Compton scatter polarimeter for measuring the linear polarization of hard X-rays (100-300 keV) from astrophysical sources. A laboratory prototype polarimeter has been used to successfully demonstrate the reliability of our Monte Carlo simulation code and to demonstrate our ability to generate a polarized photon source in the lab. Our design concept places a self-containedpolarimeter module on the front-end of a a 5-inch position sensitive PMT (PSPMT). We are currently working on the fabrication of a science model based on this PSPMT concept. Although the emphasis of our development effort is towards measuring hard X-rays from solar flares, our design has the advantage that it is sensitive over a rather large field-of-view (\u3e1 steradian), a feature that makes it especially attractive for Îł-ray burst studies
A hard X-ray solar flare polarimeter design based on scintillating fibers
We have developed a design for a Compton scatter polarimeter to measure the polarization of hard X-rays (50â300 keV) from solar flares. The modular design is based on an annular array of scintillating fibers coupled to a 5-inch position-sensitive PMT. Incident photons scatter from the fiber array into a small array of NaI detectors located at the center of the annulus. The location of the interactions in both the fiber array and in the NaI array can be used to measure the linear polarization of the incident flux. This compact design may be well-suited to a variety of astrophysical applications. An extensive series of Monte Carlo simulations has been performed to characterize this design
New Accounting Guidance For Business Combinations
The Financial Accounting Standards Board (FASB) issued Statement of Financial Accounting Standards (SFAS) No. 141 Business Combinations in June 2001. SFAS 141 supersedes Accounting Principles Board (APB) Opinion No. 16 Business Combinations and SFAS No. 38 Accounting for Preacquisition Contingencies of Purchased Enterprises. APB Opinion 16 created two acceptable methods of accounting for a business combination, the purchase and the pooling of interests methods. These two different methods often resulted in very different financial results for economically similar transactions
4. The School Develops
Between 1947 and 1953, when M.P. Catherwood left the deanship to become New Yorkâs industrial commissioner, the ILR School developed into a full fledged enterprise. These pages attempt to capture some of the excitement of this period of the schoolâs history, which was characterized by vigor, growth, and innovation. Includes: Alumni Recall Their Lives as Students; The Faculty Were Giants; Alice Cook: Lifelong Scholar, Consummate Teacher; Frances Perkins; Visits and Visitors; Tenth Anniversary: Reflection and Change; The Emergence of Departments at ILR; Development of International Programs and Outreach
CASTER - a concept for a Black Hole Finder Probe based on the use of new scintillator technologies
The primary scientific mission of the Black Hole Finder Probe (BHFP), part of
the NASA Beyond Einstein program, is to survey the local Universe for black
holes over a wide range of mass and accretion rate. One approach to such a
survey is a hard X-ray coded-aperture imaging mission operating in the 10--600
keV energy band, a spectral range that is considered to be especially useful in
the detection of black hole sources. The development of new inorganic
scintillator materials provides improved performance (for example, with regards
to energy resolution and timing) that is well suited to the BHFP science
requirements. Detection planes formed with these materials coupled with a new
generation of readout devices represent a major advancement in the performance
capabilities of scintillator-based gamma cameras. Here, we discuss the Coded
Aperture Survey Telescope for Energetic Radiation (CASTER), a concept that
represents a BHFP based on the use of the latest scintillator technology.Comment: 12 pages; conference paper presented at the SPIE conference "UV,
X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIV." To be
published in SPIE Conference Proceedings, vol. 589
CASTER: a scintillator-based black hole finder probe
The primary scientific mission of the Black Hole Finder Probe (BHFP), part of the NASA Beyond Einstein program, is to survey the local Universe for black holes over a wide range of mass and accretion rate. One approach to such a survey is a hard X-ray coded-aperture imaging mission operating in the 10-600 keV energy band, a spectral range that is considered to be especially useful in the detection of black hole sources. The development of new inorganic scintillator materials provides improved performance (for example, with regards to energy resolution and timing) that is well suited to the BHFP science requirements. Detection planes formed with these materials coupled with a new generation of readout devices represent a major advancement in the performance capabilities of scintillator-based gamma cameras. Here, we discuss the Coded Aperture Survey Telescope for Energetic Radiation (CASTER), a concept that represents a BHFP based on the use of the latest scintillator technology
The TIGRE gamma-ray telescope
TIGRE is an advanced telescope for gamma-ray astronomy with a few arcmin resolution. From 0.3 to 10 MeV it is a Compton telescope. Above 1 MeV, its multi-layers of double sided silicon strip detectors allow for Compton recoil electron tracking and the unique determination for incident photon direction. From 10 to 100 MeV the tracking feature is utilized for gamma-ray pair event reconstruction. Here we present TIGRE energy resolutions, background simulations and the development of the electronics readout system
First results of the BATSE/COMPTEL/NMSU rapid burst response campaign
The Imaging Compton Telescope (COMPTEL) on board the Compton Gamma Ray Observatory regularly observes gammaâray bursts which occur inside the instrumentâs âŒ1 sr fieldâofâview. COMPTEL images bursts in the 0.75â30 MeV energy range with a typical location accuracy of 1â3 degrees, depending on burst strength, position, duration, and spectrum. COMPTELâs imaging capability has been exploited in order to search for fading gammaâray burst counterparts at other wavelengths through the establishment of a BATSE/COMPTEL/NMSU rapid burst response campaign. This campaign utilizes near realâtime identification and preliminary burst location by BATSE, accelerated COMPTEL imaging, and a worldâwide network of observers to search COMPTEL error boxes as quickly as possible. Timely, deep searches for lingering counterpart emission of several bursts per year are the realized goal of this campaign. During its first year of operation, the rapid response program has been successfully applied to two strong bursts: GRB 930131 and GRB 930309. These bursts were imaged in record time only hours after their occurrence. Subsequently, several observations were made at radio and optical observatories worldâwide
- âŠ