41 research outputs found
Evolving technological change in pork production supporting expectations of improved productivity, sustainability and flexibility
The Australasian Pig Science Association (APSA) has a long and storied history of helping to lead thoughtful discussion on important topics affecting pork production. Established in 1987, it has hosted the Manipulating Pig Production conference every 2 years, with the 2019 meeting the 17th such event. This conference is viewed globally as an innovative and progressive event. In this regard, the global pork industry is working hard to respond to the many forces affecting its future: management and prevention of diseases, including the debilitating viral disease African swine fever (Sanchez-Cordon et al., 2018), improving productivity to fulfil expectations of demand for product, attention to pork’s environmental footprint and satisfying an increasingly demanding and diverse consumer marketplace (Busch and Spiller, 2019). A special issue of Animal, including many topics seeking to address the aforementioned issues, is therefore appropriate and timely. The content of this special issue, reflected in its diversity, reveals some of the approaches that are being brought to bear to address these challenges, from precision agriculture to alternative protein sources to improved control of reproduction
Recommended from our members
Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces
Background: Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. Results: Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in early-life environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoor-housed pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results. Conclusion: Early-life environment significantly affects both microbial composition of the adult gut and mucosal innate immune function. We observed that a microbiota dominated by lactobacilli may function to maintain mucosal immune homeostasis and limit pathogen colonization
Effect of diet type and added copper on growth performance, carcass characteristics, total tract digestibility, gut morphology, and mucosal mRNA expression of finishing pigs
Citation: Coble, K., Burnett, D., Goodband, R. D., Gonzalez, J. M., Usry, J. L., Tokach, M. D., . . . Vaughn, M. A. (2016). Effect of diet type and added copper on growth performance, carcass characteristics, total tract digestibility, gut morphology, and mucosal mRNA expression of finishing pigs. Journal of Animal Science, 94, 140-141. doi:10.2527/msasas2016-299A total of 757 pigs (PIC 337 × 1050; initially 27.6 kg BW) were used in a 117-d experiment to determine the effects of added Cu (TBCC; tribasic copper chloride, IntelliBond C; Micronutrients, Inc., Indianapolis, IN) and diet type on growth performance, carcass characteristics, energy digestibility, gut morphology, and mucosal mRNA expression of finishing pigs. Pens of pigs were allotted to 1 of 4 dietary treatments, balanced on average pen weight in a randomized complete-block design with 26 to 28 pigs/pen and 7 replications/treatment. Treatments were arranged in a 2 × 2 factorial arrangement with main effects of diet type, a corn-soybean meal-based diet (corn-soy) or a high byproduct diet (byproduct) with 30% distillers dried grains with solubles (DDGS) and 15% bakery meal, and added Cu (0 (10 mg/kg basal) or 150 mg/kg added Cu). There were no Cu×diet type interactions for growth performance. Neither added Cu nor diet type significantly influenced overall growth performance, although adding Cu during the early finishing period tended to increase (P = 0.076) ADG compared to pigs fed none (0.85 vs. 0.83). However, NE caloric efficiency was improved (P = 0.001) for pigs fed the corn-soy diet compared to the byproduct diet (6.76 vs. 7.15 Mcal intake/kg BW gain). Pigs fed the corn-soy diet had improved carcass yield (P = 0.007; 74.33 vs. 73.19%) and HCW G:F (P = 0.011; 0.274 vs. 0.266), and tended to have increased HCW (P = 0.067; 94.60 vs. 92.65 kg) and HCW ADG (P = 0.056; 0.635 vs. 0.615 kg/d) compared to pigs fed the byproduct diet. A Cu×diet type interaction (P < 0.05) existed for DM and GE digestibility in phase 2 as added Cu improved digestibility of DM and GE in the corn-soy diet, but not in the byproduct diet. In phase 4, added Cu tended to increase DM and GE digestibility (P = 0.060) while pigs fed the byproduct diet had decreased DM and GE digestibility (P = 0.001) compared to the corn-soy diet. For gut morphology, pigs fed added Cu had decreased distal small intestine crypt depth (P = 0.017; 207 vs. 225 um) compared to those fed no added Cu. Furthermore, pigs fed added Cu had decreased (P = 0.032; 0.618 vs. 0.935) relative mRNA expression of intestinal fatty acid binding protein (iFABP) compared to those fed no added Cu. In summary, 150 mg/kg added TBCC did not significantly affect overall growth but did influence diet digestibility and some gut morphology or mRNA expression measurements. Feeding a high byproduct diet decreased yield, caloric efficiency, and diet digestibility
Recommended from our members
Restricting Microbial Exposure in Early Life Negates the Immune Benefits Associated with Gut Colonization in Environments of High Microbial Diversity
Background: Acquisition of the intestinal microbiota in early life corresponds with the development of the mucosal immune system. Recent work on caesarean-delivered infants revealed that early microbial composition is influenced by birthing method and environment. Furthermore, we have confirmed that early-life environment strongly influences both the adult gut microbiota and development of the gut immune system. Here, we address the impact of limiting microbial exposure after initial colonization on the development of adult gut immunity.
Methodology/Principal Findings: Piglets were born in indoor or outdoor rearing units, allowing natural colonization in the
immediate period after birth, prior to transfer to high-health status isolators. Strikingly, gut closure and morphological
development were strongly affected by isolator-rearing, independent of indoor or outdoor origins of piglets. Isolator-reared
animals showed extensive vacuolation and disorganization of the gut epithelium, inferring that normal gut closure requires
maturation factors present in maternal milk. Although morphological maturation and gut closure were delayed in isolatorreared
animals, these hard-wired events occurred later in development. Type I IFN, IL-22, IL-23 and Th17 pathways were
increased in indoor-isolator compared to outdoor-isolator animals during early life, indicating greater immune activation in
pigs originating from indoor environments reflecting differences in the early microbiota. This difference was less apparent
later in development due to enhanced immune activation and convergence of the microbiota in all isolator-reared animals.
This correlated with elevation of Type I IFN pathways in both groups, although T cell pathways were still more affected in
indoor-reared animals.
Conclusions/Significance: Environmental factors, in particular microbial exposure, influence expression of a large number
of immune-related genes. However, the homeostatic effects of microbial colonization in outdoor environments require
sustained microbial exposure throughout development. Gut development in high-hygiene environments negatively
impacts on normal succession of the gut microbiota and promotes innate immune activation which may impair immune
homeostasis
Recommended from our members
Establishment of Normal Gut Microbiota Is Compromised under Excessive Hygiene Conditions
Background: Early gut colonization events are purported to have a major impact on the incidence of infectious,
inflammatory and autoimmune diseases in later life. Hence, factors which influence this process may have important
implications for both human and animal health. Previously, we demonstrated strong influences of early-life environment on
gut microbiota composition in adult pigs. Here, we sought to further investigate the impact of limiting microbial exposure
during early life on the development of the pig gut microbiota.
Methodology/Principal Findings: Outdoor- and indoor-reared animals, exposed to the microbiota in their natural rearing
environment for the first two days of life, were transferred to an isolator facility and adult gut microbial diversity was
analyzed by 16S rRNA gene sequencing. From a total of 2,196 high-quality 16S rRNA gene sequences, 440 phylotypes were
identified in the outdoor group and 431 phylotypes in the indoor group. The majority of clones were assigned to the four
phyla Firmicutes (67.5% of all sequences), Proteobacteria (17.7%), Bacteroidetes (13.5%) and to a lesser extent,
Actinobacteria (0.1%). Although the initial maternal and environmental microbial inoculum of isolator-reared animals was
identical to that of their naturally-reared littermates, the microbial succession and stabilization events reported previously in
naturally-reared outdoor animals did not occur. In contrast, the gut microbiota of isolator-reared animals remained highly
diverse containing a large number of distinct phylotypes.
Conclusions/Significance: The results documented here indicate that establishment and development of the normal gut
microbiota requires continuous microbial exposure during the early stages of life and this process is compromised under
conditions of excessive hygiene
Crop Updates 2005 - Farming Systems
This session covers forty four papers from different authors:
PLENARY
1. 2005 Outlook, David Stephens and Nicola Telcik, Department of Agriculture
FERTILITY AND NUTRITION
2. The effect of higher nitrogen fertiliser prices on rotation and fertiliser strategies in cropping systems, Ross Kingwell, Department of Agriculture and University of Western Australia
3. Stubble management: The short and long term implications for crop nutrition and soil fertility, Wayne Pluske, Nutrient Management Systems and Bill Bowden, Department of Agriculture
4. Stubble management: The pros and cons of different methods, Bill Bowden, Department of Agriculture, Western Australia and Mike Collins, WANTFA
5. Effect of stubble burning and seasonality on microbial processes and nutrient recycling, Frances Hoyle, The University of Western Australia
6. Soil biology and crop production in Western Australian farming systems, D.V. Murphy, N. Milton, M. Osman, F.C. Hoyle, L.K Abbott, W.R. Cookson and S. Darmawanto, The University of Western Australia
7. Urea is as effective as CAN when no rain for 10 days, Bill Crabtree, Crabtree Agricultural Consulting
8. Fertiliser (N,P,S,K) and lime requirements for wheat production in the Merredin district, Geoff Anderson, Department of Agriculture and Darren Kidson, Summit Fertilizers
9. Trace element applications: Up-front verses foliar? Bill Bowden and Ross Brennan, Department of Agriculture
10. Fertcare®, Environmental Product Stewardship and Advisor Standards for thee Fertiliser Industry, Nick Drew, Fertilizer Industry Federation of Australia (FIFA)
SOIL AND LAND MANAGEMENT
11. Species response to row spacing, density and nutrition, Bill Bowden, Craig Scanlan, Lisa Sherriff, Bob French and Reg Lunt, Department of Agriculture
12. Investigation into the influence of row orientation in lupin crops, Jeff Russell, Department of Agriculture and Angie Roe, Farm Focus Consultants
13. Deriving variable rate management zones for crops, Ian Maling, Silverfox Solutions and Matthew Adams, DLI
14. In a world of Precision Agriculture, weigh trailers are not passé, Jeff Russell, Department of Agriculture
15. Cover crop management to combat ryegrass resistance and improve yields, Jeff Russell, Department of Agriculture and Angie Roe, Farm Focus Consultants
16. ARGT home page, the place to find information on annual ryegrass toxicity on the web, Dr George Yan, BART Pty Ltd
17. Shallow leading tine (SLT) ripper significantly reduces draft force, improves soil tilth and allows even distribution of subsoil ameliorants, Mohammad Hamza, Glen Riethmuller and Wal Anderson, Department of Agriculture
PASTURE ANS SUMMER CROP SYSTEMS
18. New annual pasture legumes for Mediteranean farming systems, Angelo Loi, Phil Nichols, Clinton Revell and David Ferris, Department of Agriculture
19. How sustainable are phase rotations with Lucerne? Phil Ward, CSIRO Plant Industry
20. Management practicalities of summer cropping, Andrea Hills and Sally-Anne Penny, Department of Agriculture
21. Rainfall zone determines the effect of summer crops on winter yields, Andrea Hills, Sally-Anne Penny and David Hall, Department of Agriculture
22. Summer crops and water use, Andrea Hills, Sally-Anne Penny and David Hall, Department of Agriculture, and Michael Robertson and Don Gaydon, CSIRO Brisbane
23. Risk analysis of sorgum cropping, Andrea Hills and Sally-Anne Penny, Department of Agriculture, and Dr Michael Robertson and Don Gaydon, CSIRO Brisbane
FARMER DECISION SUPPORT AND ADOPTION
24. Variety release and End Point Royalties – a new system? Tress Walmsley, Department of Agriculture
25. Farming system analaysis using the STEP Tool, Caroline Peek and Megan Abrahams, Department of Agriculture
26. The Leakage Calculator: A simple tool for groundwater recharge assessment, Paul Raper, Department of Agriculture
27. The cost of Salinity Calculator – your tool to assessing the profitability of salinity management options, Richard O’Donnell and Trevor Lacey, Department of Agriculture
28. Climate decision support tools, Meredith Fairbanks and David Tennant, Department of Agriculture
29. Horses for courses – using the best tools to manage climate risk, Cameron Weeks, Mingenew-Irwin Group/Planfarm and Richard Quinlan, Planfarm Agronomy
30. Use of seasonal outlook for making N decisions in Merredin, Meredith Fairbanks and Alexandra Edward, Department of Agriculture
31. Forecasts and profits, Benefits or bulldust? Chris Carter and Doug Hamilton, Department of Agriculture
32. A tool to estimate fixed and variable header and tractor depreciation costs, Peter Tozer, Department of Agriculture
33. Partners in grain: ‘Putting new faces in new places’, Renaye Horne, Department of Agriculture
34. Results from the Grower group Alliance, Tracey Gianatti, Grower Group Alliance
35. Local Farmer Group Network – farming systems research opportunities through local groups, Paul Carmody, Local Farmer Group Network
GREENHOUSE GAS AND CLIMATE CHANGE
36. Changing rainfall patterns in the grainbelt, Ian Foster, Department of Agriculture
37. Vulnerability of broadscale agriculture to the impacts of climate change, Michele John, CSIRO (formerly Department of Agriculture) and Ross George, Department of Agriculture
38. Impacts of climate change on wheat yield at Merredin, Imma Farré and Ian Foster, Department of Agriculture
39. Climate change, land use suitability and water security, Ian Kininmonth, Dennis van Gool and Neil Coles, Department of Agriculture
40. Nitrous oxide emissions from cropping systems, Bill Porter, Department of Agriculture, Louise Barton, University of Western Australia
41. The potential of greenhouse sinks to underwrite improved land management in Western Australia, Richard Harper and Peter Ritson, CRC for Greenhouse Accounting and Forest Products Commission, Tony Beck, Tony Beck Consulting Services, Chris Mitchell and Michael Hill, CRC for Greenhouse Accounting
42. Removing uncertainty from greenhouse emissions, Fiona Barker-Reid, Will Gates, Ken Wilson and Rob Baigent, Department of Primary Industries - Victoria and CRC for Greenhouse Accounting (CRCGA), and Ian Galbally, Mick Meyer and Ian Weeks, CSIRO Atmospheric Research and CRCGA
43. Greenhouse in Agriculture Program (GIA), Traci Griffin, CRC for Greenhouse Accounting
44. Grains Greenhouse Accounting framework, D. Rodriguez, M. Probust, M. Meyers, D. Chen, A. Bennett, W. Strong, R. Nussey, I. Galbally and M. Howden
CONTACT DETAILS FOR PRINCIPAL AUTHOR
Differential Impacts of Cereal and Protein Sources Fed to Pigs after Weaning on Diarrhoea and Faecal Shedding of Escherichia coli, Production, and Total Tract Apparent Digestibility
Different cereal types, in combination with different protein sources, are fed to pigs after weaning, but their interactions and possible implications are not well researched. In this study, 84 male weaned piglets were used in a 21-day feeding trial to investigate the effects of feeding either medium-grain or long-grain extruded rice or wheat, in a factorial combination with protein sources of either vegetable or animal origin, on postweaning performance, shedding of β–haemolytic Escherichia coli, and the coefficient of total tract apparent digestibility (CTTAD). Pigs fed either rice type performed the same (p > 0.05) as wheat-fed pigs after weaning. The use of vegetable protein sources reduced growth rate (p < 0.001) and feed intake (p = 0.007) and deteriorated the feed conversion ratio (p = 0.028) in weeks two and three compared to pigs fed animal protein sources. The number of antibiotic treatments given for clinical diarrhoea was similar (p > 0.05). However, the faecal E. coli score showed a trend for the main effect of protein source, with pigs fed animal proteins showing a higher E. coli score than pigs fed vegetable proteins (0.63 vs. 0.43, p = 0.057). There was also a tendency for an interaction (p = 0.069) between cereal type and protein source (p = 0.069), with this difference being associated with a greater faecal score in pigs fed diets with long-grain rice plus animal proteins and wheat plus animal proteins. Significant interactions occurred for the CTTAD when assessed in week three. In general, pigs fed diets with medium-grain rice or long-grain rice with animal proteins had a higher (p < 0.001) CTTAD for dietary components than pigs fed all other diets, and vegetable proteins depressed (p < 0.001) CTTAD compared to animal proteins (main effect of protein: p < 0.001). In summary, pigs tolerated the extruded rice-based diets well and performed equivalently to pigs fed wheat as the sole cereal, and the use of vegetable proteins decreased the E. coli score