797 research outputs found

    Tiered Technologies of Power: Subject-making in China through Electronic Censorship

    Get PDF
    Since its inception and rise to wide-spread popularity, the internet has provided new opportunities for communication and configured global connectivity possibilities and information sharing. However, with this technological revolution, new and interesting regulatory challenges have emerged. With this paper, I build on Foucauldian understandings of governmentality to examine internet censorship in China within the global context, arguing that these issues of internet censorship in China represent an important example of the emergence of new techniques of governing that stem from new, globalized threats to state control. As a fundamentally global network, the internet ranks among one of the most pressing of these threats, requiring new regulatory practices in both authoritarian and non-authoritarian regimes. This paper argues that as a result, new, decentralized regulatory practices have emerged to augment existing centralized techniques of control and, in the process, constructed tiered technologies of power through which subjects are produced and governed

    Probability of Tropical Cyclone Induced Winds at Cape Kennedy

    Get PDF
    A statistical technique is developed for estimating the climatological probability that an existing tropical cyclone will produce sustained 35-knot winds at Cape Kennedy. Probabilities are specified for specific times and for various time intervals extending to seven days. The technique is developed initially considering only the storm\u27s location, then expanded to take into account its antecedent path. Two classes of storms are processed separately: (1) Those originating over the Atlantic Ocean or the eastern Caribbean Sea, and (2) those originating over the western Caribbean Sea or the Gulf of Mexico. The technique can be adapted for wind speeds of other threshold values and for other coastal locations which may be affected by tropical cyclones

    Modelling the hepatitis B vaccination programme in prisons

    Get PDF
    A vaccination programme offering hepatitis B (HBV) vaccine at reception into prison has been introduced into selected prisons in England and Wales. Over the coming years it is anticipated this vaccination programme will be extended. A model has been developed to assess the potential impact of the programme on the vaccination coverage of prisoners, ex-prisoners, and injecting drug users (IDUs). Under a range of coverage scenarios, the model predicts the change over time in the vaccination status of new entrants to prison, current prisoners and IDUs in the community. The model predicts that at baseline in 2012 57% of the IDU population will be vaccinated with up to 72% being vaccinated depending on the vaccination scenario implemented. These results are sensitive to the size of the IDU population in England and Wales and the average time served by an IDU during each prison visit. IDUs that do not receive HBV vaccine in the community are at increased risk from HBV infection. The HBV vaccination programme in prisons is an effective way of vaccinating this hard-to-reach population although vaccination coverage on prison reception must be increased to achieve this

    Resonance fluorescence in a band gap material: Direct numerical simulation of non-Markovian evolution

    Get PDF
    A numerical method of calculating the non-Markovian evolution of a driven atom radiating into a structured continuum is developed. The formal solution for the atomic reduced density matrix is written as a Markovian algorithm by introducing a set of additional, virtual density matrices which follow, to the level of approximation of the algorithm, all the possible trajectories of the photons in the electromagnetic field. The technique is perturbative in the sense that more virtual density matrices are required as the product of the effective memory time and the effective coupling strength become larger. The number of density matrices required is given by 3M3^{M} where MM is the number of timesteps per memory time. The technique is applied to the problem of a driven two-level atom radiating close to a photonic band gap and the steady-state correlation function of the atom is calculated.Comment: 14 pages, 9 figure

    The steady state quantum statistics of a non-Markovian atom laser

    Full text link
    We present a fully quantum mechanical treatment of a single-mode atomic cavity with a pumping mechanism and an output coupling to a continuum of external modes. This system is a schematic description of an atom laser. In the dilute limit where atom-atom interactions are negligible, we have been able to solve this model without making the Born and Markov approximations. When coupling into free space, it is shown that for reasonable parameters there is a bound state which does not disperse, which means that there is no steady state. This bound state does not exist when gravity is included, and in that case the system reaches a steady state. We develop equations of motion for the two-time correlation in the presence of pumping and gravity in the output modes. We then calculate the steady-state output energy flux from the laser.Comment: 14 pages (twocloumn), 6 figure

    Nosocomial transmission of C. difficile in English hospitals from patients with symptomatic infection.

    Get PDF
    BACKGROUND: Recent evidence suggests that less than one-quarter of patients with symptomatic nosocomial Clostridium difficile infections (CDI) are linked to other in-patients. However, this evidence was limited to one geographic area. We aimed to investigate the level of symptomatic CDI transmission in hospitals located across England from 2008 to 2012. METHODS: A generalized additive mixed-effects Poisson model was fitted to English hospital-surveillance data. After adjusting for seasonal fluctuations and between-hospital variation in reported CDI over time, possible clustering (transmission between symptomatic in-patients) of CDI cases was identified. We hypothesised that a temporal proximity would be reflected in the degree of correlation between in-hospital CDI cases per week. This correlation was modelled through a latent autoregressive structure of order 1 (AR(1)). FINDINGS: Forty-six hospitals (33 general, seven specialist, and six teaching hospitals) located in all English regions met our criteria. In total, 12,717 CDI cases were identified; seventy-five per cent of these occurred >48 hours after admission. There were slight increases in reports during winter months. We found a low, but statistically significant, correlation between successive weekly CDI case incidences (phi = 0.029, 95%CI: 0.009-0.049). This correlation was five times stronger in a subgroup analysis restricted to teaching hospitals (phi = 0.104, 95%CI: 0.048-0.159). CONCLUSIONS: The results suggest that symptomatic patient-to-patient transmission has been a source of CDI-acquisition in English hospitals in recent years, and that this might be a more important transmission route in teaching hospitals. Nonetheless, the weak correlation indicates that, in line with recent evidence, symptomatic cases might not be the primary source of nosocomial CDI in England

    Density matrix operatorial solution of the non--Markovian Master Equation for Quantum Brownian Motion

    Full text link
    An original method to exactly solve the non-Markovian Master Equation describing the interaction of a single harmonic oscillator with a quantum environment in the weak coupling limit is reported. By using a superoperatorial approach we succeed in deriving the operatorial solution for the density matrix of the system. Our method is independent of the physical properties of the environment. We show the usefulness of our solution deriving explicit expressions for the dissipative time evolution of some observables of physical interest for the system, such as, for example, its mean energy.Comment: 16 pages, 1 figur

    A perturbative approach to non-Markovian stochastic Schr\"odinger equations

    Full text link
    In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian Stochastic Schr\"odinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two level atom immersed in a environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensembled average state ρred(t)\rho_{\rm red}(t) approach the exact reduced state found via Imamo\=glu's enlarged system method [Phys. Rev. A. 50, 3650 (1994)].Comment: 17 pages, 4 figure
    corecore