85,185 research outputs found

    Transformation without Paternalism

    Get PDF
    Human development is meant to be transformational in that it aims to improve people's lives by enhancing their capabilities. But who does it target: people as they are or the people they will become? This paper argues that the human development approach relies on an understanding of personal identity as dynamic rather than as static collections of preferences, and that this distinguishes human development from conventional approaches to development. Nevertheless, this dynamic understanding of personal identity is presently poorly conceptualized and this has implications for development practice. We identify a danger of paternalism and propose institutionalizing two procedural principles as side constraints on development policies and projects: the principle of free prior informed consent and the principle of democratic development

    Spherically symmetric model stellar atmospheres and limb darkening II: limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for FGK dwarf stars

    Full text link
    Limb darkening is a fundamental ingredient for interpreting observations of planetary transits, eclipsing binaries, optical/infrared interferometry and microlensing events. However, this modeling traditionally represents limb darkening by a simple law having one or two coefficients that have been derived from plane-parallel model stellar atmospheres, which has been done by many researchers. More recently, researchers have gone beyond plane-parallel models and considered other geometries. We previously studied the limb-darkening coefficients from spherically symmetric and plane-parallel model stellar atmospheres for cool giant and supergiant stars, and in this investigation we apply the same techniques to FGK dwarf stars. We present limb-darkening coefficients, gravity-darkening coefficients and interferometric angular diameter corrections from Atlas and SAtlas model stellar atmospheres. We find that sphericity is important even for dwarf model atmospheres, leading to significant differences in the predicted coefficients.Comment: 9 pages, 8 figures. Accepted for publication in A&

    Funding Health Care for All Americans: An Economic Perspective

    Get PDF
    Provides an overview of healthcare spending and funding sources, levels of subsidy and compulsion required for universal coverage, alternative funding instruments, and issues to consider in evaluating them, such as effects on the economy or health sector

    The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polarized epithelial cells

    Get PDF
    Loss of full-length adenomatous polyposis coli (APC) protein correlates with the development of colon cancers in familial and sporadic cases. In addition to its role in regulating β-catenin levels in the Wnt signaling pathway, the APC protein is implicated in regulating cytoskeletal organization. APC stabilizes microtubules in vivo and in vitro, and this may play a role in cell migration (Näthke, I.S., C.L. Adams, P. Polakis, J.H. Sellin, and W.J. Nelson. 1996. J. Cell Biol. 134:165–179; Mimori-Kiyosue, Y., N. Shiina, and S. Tsukita. 2000. J. Cell Biol. 148:505–517; Zumbrunn, J., K. Inoshita, A.A. Hyman, and I.S. Näthke. 2001. Curr. Biol. 11:44–49) and in the attachment of microtubules to kinetochores during mitosis (Fodde, R., J. Kuipers, C. Rosenberg, R. Smits, M. Kielman, C. Gaspar, J.H. van Es, C. Breukel, J. Wiegant, R.H. Giles, and H. Clevers. 2001. Nat. Cell Biol. 3:433–438; Kaplan, K.B., A. Burds, J.R. Swedlow, S.S. Bekir, P.K. Sorger, and I.S. Näthke. 2001. Nat. Cell Biol. 3:429–432). The localization of endogenous APC protein is complex: actin- and microtubule-dependent pools of APC have been identified in cultured cells (Näthke et al., 1996; Mimori-Kiyosue et al., 2000; Reinacher-Schick, A., and B.M. Gumbiner. 2001. J. Cell Biol. 152:491–502; Rosin-Arbesfeld, R., G. Ihrke, and M. Bienz. 2001. EMBO J. 20:5929–5939). However, the localization of APC in tissues has not been identified at high resolution. Here, we show that in fully polarized epithelial cells from the inner ear, endogenous APC protein associates with the plus ends of microtubules located at the basal plasma membrane. Consistent with a role for APC in supporting the cytoskeletal organization of epithelial cells in vivo, the number of microtubules is significantly reduced in apico-basal arrays of microtubule bundles isolated from mice heterozygous for APC

    To DGC or not to DGC: oxygen guarding in the termite Zootermopsis nevadensis (Isoptera: Termopsidae)

    Get PDF
    The ability of some insects to engage in complex orchestrations of tracheal gas exchange has been well demonstrated, but its evolutionary origin remains obscure. According to a recently proposed hypothesis, insects may employ spiracular control of gas exchange to guard tissues against long-term oxidative damage by using the discontinuous gas-exchange cycle (DGC) to limit internal oxygen partial pressure (P_(O_2)). This manuscript describes a different approach to oxygen guarding in the lower termite Zootermopsis nevadensis. These insects do not display a DGC but respond to elevated oxygen concentrations by restricting spiracular area, resulting in a transient decline in CO_2 emission. High internal CO_2 concentrations are then maintained; restoring normoxia results in a transient reciprocal increase in CO_2 emission caused by release of excess endotracheal CO_2. These changes in spiracular area reflect active guarding of low internal O_2 concentrations and demonstrate that regulation of endotracheal hypoxia takes physiological priority over prevention of CO_2 build-up. This adaptation may reflect the need to protect oxygen-sensitive symbionts (or, gut bug guarding). Termites may eschew the DGC because periodic flushing of the tracheal system with air may harm the obligate anaerobes upon which the lower termites depend for survival on their native diet of chewed wood

    Limb Darkening and Planetary Transits II: Intensity profile correction factors for a grid of model stellar atmospheres

    Full text link
    The ability to observe extrasolar planets transiting their stars has profoundly changed our understanding of these planetary systems. However, these measurements depend on how well we understand the properties of the host star, such as radius, luminosity and limb darkening. Traditionally, limb darkening is treated as a parameterization in the analysis, but these simple parameterizations are not accurate representations of actual center-to-limb intensity variations (CLIV) to the precision needed for interpreting these transit observations. This effect leads to systematic errors for the measured planetary radii and corresponding measured spectral features. We compute synthetic planetary transits using model stellar atmosphere CLIV and corresponding best-fit limb-darkening laws for a grid spherically symmetric model stellar atmospheres. From these light curves we measure the differences in flux as a function of the star's effective temperature, gravity, mass, and the inclination of the planet's orbit.Comment: 10 pages, 8 figures, submitted to AAS journals. Comments welcom
    corecore