731 research outputs found

    Future of smart cardiovascular implants

    Get PDF
    Cardiovascular disease remains the leading cause of death in Western society. Recent technological advances have opened the opportunity of developing new and innovative smart stent devices that have advanced electrical properties that can improve diagnosis and even treatment of previously intractable conditions, such as central line access failure, atherosclerosis and reporting on vascular grafts for renal dialysis. Here we review the latest advances in the field of cardiovascular medical implants, providing a broad overview of the application of their use in the context of cardiovascular disease rather than an in-depth analysis of the current state of the art. We cover their powering, communication and the challenges faced in their fabrication. We focus specifically on those devices required to maintain vascular access such as ones used to treat arterial disease, a major source of heart attacks and strokes. We look forward to advances in these technologies in the future and their implementation to improve the human condition

    Lin28A induces energetic switching to glycolytic metabolism in human embryonic kidney cells

    Get PDF
    Background: Loss of a cell’s capacity to generate sufficient energy for cellular functions is a key hallmark of the ageing process and ultimately leads to a variety of important age-related pathologies such as cancer, Parkinson’s disease and atherosclerosis. Regenerative medicine has sought to reverse these pathologies by reprogramming somatic cells to a more juvenile energetic state using a variety of stem cell factors. One of these factors, Lin28, is considered a candidate for modification in the reprogramming of cellular energetics to ameliorate the ageing process while retaining cell phenotype. Results: Over-expression of Lin28A resulted in key changes to cellular metabolism not observed in wild-type controls. Extracellular pH flux analysis indicated that Lin28A over expression significantly increased the rate of glycolysis, whilst high resolution oxygen respirometry demonstrated a reduced oxygen consumption. Western blot and real-time PCR analysis identified Hexokinase II as one of the key modulators of glycolysis in these cells which was further confirmed by increased glucose transport. A metabolic switching effect was further emphasised by Western blot analysis where the oxygen consuming mitochondrial complex IV was significantly reduced after Lin28A over expression. Conclusions: Results from this study confirm that Lin28A expression promotes metabolic switching to a phenotype that relies predominantly on glycolysis as an energy source, while compromising oxidative phosphorylation. Mechanisms to augment regulated Lin28A in age related pathologies that are characterised by mitochondria dysfunction or in differentiated and aged post-mitotic cells is the future goal of this work

    A preliminary study on ice shape tracing with a laser light sheet

    Get PDF
    Preliminary work towards the development of an automated method of measuring the shape of ice forming on an airfoil during wind tunnel tests has been completed. A thin sheet of light illuminated the front surfaces of rime, glaze, and mixed ice shapes and a solid-state camera recorded images of each. A maximum intensity algorithm extracted the profiles of the ice shapes and the results were compared to hand tracings. Very good general agreement was found in each case

    Impaired mitochondrial respiration in human carotid plaque atherosclerosis: a potential role for Pink1 in vascular smooth muscle cell energetics

    Get PDF
    Background and aims: DNA damage and mitochondrial dysfunction are thought to play an essential role in ageing and the energetic decline of vascular smooth muscle cells (VSMCs) essential for maintaining plaque integrity. We aimed to better understand VSMCs and identify potentially useful compensatory pathways that could extend their lifespan. Moreover, we wanted to assess if defects in mitochondrial respiration exist in human atherosclerotic plaques and to identify the appropriate markers that may reflect a switch in VSMC energy metabolism. Methods: Human plaque tissue and cells were assessed for composition and evidence of DNA damage, repair capacity and mitochondrial dysfunction. Fresh plaque tissue was evaluated using high resolution oxygen respirometry to assess oxidative metabolism. Recruitment and processing of the mitochondrial regulator of autophagy Pink1 kinase was investigated in combination with transcriptional and protein markers associated with a potential switch to a more glycolytic metabolism. Results: Human VSMC have increased nuclear (nDNA) and mitochondrial (mtDNA) damage and reduced repair capacity. A subset of VSMCs within plaque cap had decreased oxidative phosphorylation and expression of Pink1 kinase. Plaque cells demonstrated increased glycolytic activity in response to loss of mitochondrial function. A potential compensatory glycolytic program may act as energetic switch via AMPKinase and hexokinase 2 (Hex2). Conclusions: We have identified a subset of plaque VSMCs required for plaque stability that have increased mitochondrial dysfunction and decreased oxidative phosphorylation. Pink1 kinase may initiate a cellular response to promote a compensatory glycolytic program associated with upregulation of AMPKinase and Hexokinase 2

    Fast Adaptation in Vestibular Hair Cells Requires Myosin-1c Activity

    Get PDF
    SummaryIn sensory hair cells of the inner ear, mechanical amplification of small stimuli requires fast adaptation, the rapid closing of mechanically activated transduction channels. In frog and mouse vestibular hair cells, we found that the rate of fast adaptation depends on both channel opening and stimulus size and that it is modeled well as a release of a mechanical element in series with the transduction apparatus. To determine whether myosin-1c molecules of the adaptation motor are responsible for the release, we introduced the Y61G mutation into the Myo1c locus and generated mice homozygous for this sensitized allele. Measuring transduction and adaptation in the presence of NMB-ADP, an allele-specific inhibitor, we found that the inhibitor not only blocked slow adaptation, as demonstrated previously in transgenic mice, but also inhibited fast adaptation. These results suggest that mechanical activity of myosin-1c is required for fast adaptation in vestibular hair cells

    Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins

    Get PDF
    Human mitochondrial long noncoding RNAs (lncRNAs) have not been described to date. By analysis of deep-sequencing data we have identified three lncRNAs generated from the mitochondrial genome and confirmed their expression by Northern blotting and strand-specific qRT-PCR. We show that the abundance of these lncRNAs is comparable to their complementary mRNAs and that nuclear-encoded mitochondrial proteins involved in RNA processing regulate their expression. We also identify the 5′ and 3′ transcript ends of the three lncRNAs and show that mitochondrial RNase P protein 1 (MRPP1) is important for the processing of these transcripts. Finally, we show that mitochondrial lncRNAs form intermolecular duplexes and that their abundance is cell- and tissue-specific, suggesting a functional role in the regulation of mitochondrial gene expression. Published by Cold Spring Harbor Laboratory Press

    Myosin-Vb functions as a dynamic tether for peripheral endocytic compartments during transferrin trafficking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myosin-Vb has been shown to be involved in the recycling of diverse proteins in multiple cell types. Studies on transferrin trafficking in HeLa cells using a dominant-negative myosin-Vb tail fragment suggested that myosin-Vb was required for recycling from perinuclear compartments to the plasma membrane. However, chemical-genetic, dominant-negative experiments, in which myosin-Vb was specifically induced to bind to actin, suggested that the initial hypothesis was incorrect both in its site and mode of myosin-Vb action. Instead, the chemical-genetic data suggested that myosin-Vb functions in the actin-rich periphery as a dynamic tether on peripheral endosomes, retarding transferrin transport to perinuclear compartments.</p> <p>Results</p> <p>In this study, we employed both approaches, with the addition of overexpression of full-length wild-type myosin-Vb and switching the order of myosin-Vb inhibition and transferrin loading, to distinguish between these hypotheses. Overexpression of full-length myosin-Vb produced large peripheral endosomes. Chemical-genetic inhibition of myosin-Vb after loading with transferrin did not prevent movement of transferrin from perinuclear compartments; however, virtually all myosin-Vb-decorated particles, including those moving on microtubules, were halted by the inhibition. Overexpression of the myosin-Vb tail caused a less-peripheral distribution of early endosome antigen-1 (EEA1).</p> <p>Conclusion</p> <p>All results favored the peripheral dynamic tethering hypothesis.</p
    • …
    corecore