2,498 research outputs found

    Tunnel-barrier-enhanced dc voltage signals induced by magnetization dynamics in magnetic tunnel junctions

    Full text link
    We theoretically study the recently observed tunnel-barrier-enhanced dc voltage signals generated by magnetization precession in magnetic tunnel junctions. While the spin pumping is suppressed by the high tunneling impedance, two complimentary processes are predicted to result in a sizable voltage generation in ferromagnet (F)|insulator (I)|normal-metal (N) and F|I|F junctions, with one ferromagnet being resonantly excited. Magnetic dynamics in F|I|F systems induces a robust charge pumping, translating into voltage in open circuits. In addition, dynamics in a single ferromagnetic layer develops longitudinal spin accumulation inside the ferromagnet. A tunnel barrier then acts as a nonintrusive probe that converts the spin accumulation into a measurable voltage. Neither of the proposed mechanisms suffers from spin relaxation, which is typically fast on the scale of the exponentially slow tunneling rates. The longitudinal spin-accumulation buildup, however, is very sensitive to the phenomenological ingredients of the spin-relaxation picture.Comment: 5 pages, 2 figure

    Spin and charge pumping in magnetic tunnel junctions with precessing magnetization: A nonequilibrium Green function approach

    Full text link
    We study spin and charge currents pumped by precessing magnetization of a single ferromagnetic layer within F|I|N or F|I|F (F-ferromagnet; I-insulator; N-normal-metal) multilayers of nanoscale thickness attached to two normal metal electrodes with no applied bias voltage between them. Both simple one-dimensional model, consisting of a single precessing spin and a potential barrier as the "sample," and realistic three-dimensional devices are investigated. In the rotating reference frame, where the magnetization appears to be static, these junctions are mapped onto a four-terminal dc circuit whose effectively half-metallic ferromagnetic electrodes are biased by the frequency ω/e\hbar \omega/e of microwave radiation driving magnetization precession at the ferromagnetic resonance (FMR) conditions. We show that pumped spin current in F|I|F junctions, diminished behind the tunnel barrier and increased in the opposite direction, is filtered into charge current by the second FF layer to generate dc pumping voltage of the order of 1\sim 1 μ\muV (at FMR frequency 10\sim 10 GHz) in an open circuit. In F|I|N devices, several orders of magnitude smaller charge current and the corresponding dc voltage appear concomitantly with the pumped spin current due to barrier induced asymmetry in the transmission coefficients connecting the four electrodes in the rotating frame picture of pumping.Comment: 8 pages, 5 figure

    Parametric resonance of magnetization excited by electric field

    Full text link
    Manipulation of magnetization by electric field is a central goal of spintronics because it enables energy-efficient operation of spin-based devices. Spin wave devices are promising candidates for low-power information processing but a method for energy-efficient excitation of short-wavelength spin waves has been lacking. Here we show that spin waves in nanoscale magnetic tunnel junctions can be generated via parametric resonance induced by electric field. Parametric excitation of magnetization is a versatile method of short-wavelength spin wave generation, and thus our results pave the way towards energy-efficient nanomagnonic devices

    Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    Get PDF
    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJbased microwave detector can be used as an on-chip microwave phase and spectrum analyzer

    Tunnel barrier enhanced voltage signals generated by magnetization precession of a single ferromagnetic layer

    Full text link
    We report the electrical detection of magnetization dynamics in an Al/AlOx/Ni80Fe20/Cu tunnel junction, where a Ni80Fe20 ferromagnetic layer is brought into precession under the ferromagnetic resonance (FMR) conditions. The dc voltage generated across the junction by the precessing ferromagnet is enhanced about an order of magnitude compared to the voltage signal observed when the contacts in this type of multilayered structure are ohmic. We discuss the relation of this phenomenon to magnetic spin pumping and speculate on other possible underlying mechanisms responsible for the enhanced electrical signal
    corecore