6,529 research outputs found

    Human Dorsal Striatal Activity during Choice Discriminates Reinforcement Learning Behavior from the Gambler’s Fallacy

    Get PDF
    Reinforcement learning theory has generated substantial interest in neurobiology, particularly because of the resemblance between phasic dopamine and reward prediction errors. Actor–critic theories have been adapted to account for the functions of the striatum, with parts of the dorsal striatum equated to the actor. Here, we specifically test whether the human dorsal striatum—as predicted by an actor–critic instantiation—is used on a trial-to-trial basis at the time of choice to choose in accordance with reinforcement learning theory, as opposed to a competing strategy: the gambler's fallacy. Using a partial-brain functional magnetic resonance imaging scanning protocol focused on the striatum and other ventral brain areas, we found that the dorsal striatum is more active when choosing consistent with reinforcement learning compared with the competing strategy. Moreover, an overlapping area of dorsal striatum along with the ventral striatum was found to be correlated with reward prediction errors at the time of outcome, as predicted by the actor–critic framework. These findings suggest that the same region of dorsal striatum involved in learning stimulus–response associations may contribute to the control of behavior during choice, thereby using those learned associations. Intriguingly, neither reinforcement learning nor the gambler's fallacy conformed to the optimal choice strategy on the specific decision-making task we used. Thus, the dorsal striatum may contribute to the control of behavior according to reinforcement learning even when the prescriptions of such an algorithm are suboptimal in terms of maximizing future rewards

    Ethyl and isopropyl 4-ferrocenylbenzoate.

    Get PDF
    The title compounds, [Fe(C5H5)(C14H13O2)] and [Fe(C5H5)- (C15H15O2)], respectively, contain the ferrocenyl 5(C5H4) and phenylene ±C6H4± rings in a nearly coplanar arrangement, with interplanar angles of 6.88 (12) and 10.5 (2), respectively. Molecules of the ethyl ester form dimers through 5(C5H5)CÐ H O C hydrogen bonds, with graph set R22 (20), and, together with Csp3ÐH (C5H5) interactions, generate a one-dimensional column (irregular ladder). Molecules of the isopropyl ester aggregate through 5(C5H5)CÐH (C6H4) interactions

    Emergence of a Dynamic Super-Structural Order Integrating Antiferroelectric and Antiferrodistortive Competing Instabilities in EuTiO3

    Full text link
    Microscopic structural instabilities of EuTiO3 single crystal were investigated by synchrotron x-ray diffraction. Antiferrodistortive (AFD) oxygen octahedral rotational order was observed alongside Ti derived antiferroelectric (AFE) distortions. The competition between the two instabilities is reconciled through a cooperatively modulated structure allowing both to coexist. The electric and magnetic field effect on the modulated AFD order shows that the origin of large magnetoelectric coupling is based upon the dynamic equilibrium between the AFD - antiferromagnetic interactions versus the electric polarization - ferromagnetic interactions

    The PAS domain-containing histidine kinase RpfS is a second sensor for the diffusible signal factor of <em>Xanthomonas campestris</em>

    Get PDF
    Summary: A cell-cell signalling system mediated by the fatty acid signal DSF controls the virulence of Xanthomonas campestris pv. campestris (Xcc) to plants. The synthesis and recognition of the DSF signal depends upon different Rpf proteins. DSF signal generation requires RpfF whereas signal perception and transduction depends upon the sensor RpfC and regulator RpfG. Detailed analyses of the regulatory roles of different Rpf proteins have suggested the occurrence of further sensors for DSF. Here we have used a mutagenesis approach coupled with high-resolution transcriptional analysis to identify XC_2579 (RpfS) as a second sensor for DSF in Xcc. RpfS is a complex sensor kinase predicted to have multiple Per/Arnt/Sim (PAS) domains, a histidine kinase domain and a C-terminal receiver (REC) domain. Isothermal calorimetry showed that DSF bound to the isolated N-terminal PAS domain with a Kd of 1.4μM. RpfS controlled expression of a sub-set of genes distinct from those controlled by RpfC to include genes involved in type IV secretion and chemotaxis. Mutation of XC_2579 was associated with a reduction in virulence of Xcc to Chinese Radish when assayed by leaf spraying but not by leaf inoculation, suggesting a role for RpfS-controlled factors in the epiphytic phase of the disease cycle.</p

    Applications of MODIS Fluorescent Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity

    Get PDF
    Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations, processing techniques and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean-color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS) sensor calibration updates, improved aerosol retrievals and new aerosol models has led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean color in coastal waters. This has opened the way for studying ocean phenomena and processes at finer spatial scales, such as the interactions at the land-sea interface, trends in coastal water quality and algal blooms. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and have increase local concentrations of phytoplankton, which cause harmful algal blooms. In two case studies we present MODIS observations of fluorescence line height (FLH) to 1) assess trends in water quality for Tampa Bay, Florida and 2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and satellite imagery from Tampa Bay we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions and to develop a near decadal trend in water quality changes. In situ monitoring locations that correlated well with satellite imagery were in depths greater than seven meters and were located over five kilometers from shore. Water quality parameter of total nitrogen, phosphorous, turbidity and biological oxygen demand had high correlations with these sites, as well. Satellite FLH estimates show improving water quality from 2003-2007 with a slight decline up through 2011. Dinoflagellate blooms in Monterey Bay, California (USA) have recently increased in frequency and intensity. Nine years of MODIS FLH observations are used to describe the annual and seasonal variability of bloom activity within the Bay. Three classes of MODIS algorithms were correlated against in situ chlorophyll measurements. The FLH algorithm provided the most robust estimate of bloom activity. Elevated concentrations of phytoplankton were evident during the months of August-November, a period during which increased occurrences of dinoflagellate blooms have been observed in situ. Seasonal patterns of FLH show the on- and offshore movement of areas of high phytoplankton biomass between oceanographic seasons. Higher concentrations of phytoplankton are also evident in the vicinity of the land-based nutrient sources and outflows, and the cyclonic bay-wide circulation can transport these nutrients to the northern Bay bloom incubation region. Both of these case studies illustrate the utility MODIS FLH observations in supporting management decisions in coastal and estuarine waters

    The MASSIVE Survey - I. A Volume-Limited Integral-Field Spectroscopic Study of the Most Massive Early-Type Galaxies within 108 Mpc

    Full text link
    Massive early-type galaxies represent the modern-day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ~100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* > 10^{11.5} Msun and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.Comment: 19 pages, 14 figures. ApJ (2014) vol. 795, in pres

    The MASSIVE Survey II: Stellar Population Trends Out to Large Radius in Massive Early Type Galaxies

    Full text link
    We examine stellar population gradients in ~100 massive early type galaxies spanning 180 < sigma* < 370 km/s and M_K of -22.5 to -26.5 mag, observed as part of the MASSIVE survey (Ma et al. 2014). Using integral-field spectroscopy from the Mitchell Spectrograph on the 2.7m telescope at McDonald Observatory, we create stacked spectra as a function of radius for galaxies binned by their stellar velocity dispersion, stellar mass, and group richness. With excellent sampling at the highest stellar mass, we examine radial trends in stellar population properties extending to beyond twice the effective radius (~2.5 R_e). Specifically, we examine trends in age, metallicity, and abundance ratios of Mg, C, N, and Ca, and discuss the implications for star formation histories and elemental yields. At a fixed physical radius of 3-6 kpc (the likely size of the galaxy cores formed at high redshift) stellar age and [alpha/Fe] increase with increasing sigma* and depend only weakly on stellar mass, as we might expect if denser galaxies form their central cores earlier and faster. If we instead focus on 1-1.5 R_e, the trends in abundance and abundance ratio are washed out, as might be expected if the stars at large radius were accreted by smaller galaxies. Finally, we show that when controlling for \sigmastar, there are only very subtle differences in stellar population properties or gradients as a function of group richness; even at large radius internal properties matter more than environment in determining star formation history.Comment: 17 pages, 9 figures, accepted by ApJ; resubmitted with updated reference
    corecore