electronic reprint

Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Ethyl and isopropyl 4-ferrocenylbenzoate

Frankie P. Anderson, John F. Gallagher, Peter T. M. Kenny, Clodagh Ryan and David Savage

[^0]Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Ethyl and isopropyl 4-ferrocenylbenzoate

Frankie P. Anderson, ${ }^{\text {a }}$ John F. Gallagher, ${ }^{\text {a* }}$ Peter T. M. Kenny, ${ }^{\text {a }}$ © Clodagh Ryan ${ }^{\text {b }}$ and David Savage ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ School of Chemical Sciences, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland, and ${ }^{\mathbf{b}}$ School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
Correspondence e-mail: john.gallagher@dcu.ie

Received 18 November 2002
Accepted 26 November 2002
Online 10 December 2002
The title compounds, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2}\right)\right]$ and $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}\right)$], respectively, contain the ferrocenyl $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ and phenylene $-\mathrm{C}_{6} \mathrm{H}_{4}-$ rings in a nearly coplanar arrangement, with interplanar angles of $6.88(12)$ and $10.5(2)^{\circ}$, respectively. Molecules of the ethyl ester form dimers through $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{C}$ $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds, with graph set $R_{2}^{2}(20)$, and, together with $\mathrm{Csp}{ }^{3}-\mathrm{H} \cdots \pi\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ interactions, generate a one-dimensional column (irregular ladder). Molecules of the isopropyl ester aggregate through $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{C}-\mathrm{H} \cdots \pi\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$ interactions.

Comment

The design of new redox-active ligands for application in diverse research areas, such as medicinal chemistry and materials science, has engrossed scientists in recent years. Ferrocene (Fc) derivatives, which are efficient redox systems, have been studied extensively in charge-transfer chemistry, hydrogen bonding and molecular-recognition science, peptide chemistry, non-linear optical materials, and liquid crystal research (Chesney et al., 1998; Glidewell et al., 1997; Zakaria et al., 2002; Kraatz et al., 1999; Gallagher et al., 1999a,b; Hudson, Asselsbergh et al., 2001; Hudson, Manning et al., 2001; Even et al., 2001; Seo et al., 2001). Our interest in ferrocenylbenzoyl derivatives stems from their use as precursors to ferrocenylbenzoyl amino acid ester and dipeptide derivatives. We have recently reported the crystal structure of methyl 4-ferrocenylbenzoate, (I) (Savage et al., 2002).

An understanding of the interactions present in a given crystal structure can provide valuable information on the hydrogen-bonding and aggregation modes not just in the solid state but also in the liquid-crystalline state. The structures of ethyl 4-ferrocenylbenzoate, (II), and the isopropyl analogue, (III), are reported herein for comparison with both the methyl analogue, (I), and our ongoing research on longer chain alkyl derivatives.

The $\mathrm{Fe} 1-\mathrm{C}$ bond lengths for the $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ ring of (II) are in the range $2.0341(16)-2.0452(14) \AA$, similar to the $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ ring, with a range of 2.0315 (18) -2.0407 (17) \AA. For (III), these values are in the ranges 2.024 (3)-2.044 (3) and 2.023 (4)2.033 (4) A, respectively. In (II), the $\mathrm{Fe} 1 \cdots C g 1$ and $\mathrm{Fe} 1 \cdots C g 2$ distances are 1.6425 (8) and 1.6463 (9) \AA, respectively, and the $C g 1 \cdots \mathrm{Fe} 1 \cdots C g 2$ angle is $179.49(5)^{\circ}$, where $C g 1$ and $C g 2$ are the centroids of the $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ and $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ rings, respectively. In (III), these values are 1.6413 (15) and 1.643 (2) \AA, and $178.88(9)^{\circ}$, respectively. In (II), the cyclopentadienyl C-C bond-length ranges are small, being 1.413 (3) -1.435 (2) and $1.398(3)-1.420(3) \AA$ for the $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ and $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ rings, respectively. In (III), these ranges are 1.407 (5)-1.428 (4) and 1.389 (6) -1.410 (6) \AA, respectively. These results are as expected and highlight the similarity in the ferrocenyl bond lengths and angles in the esters (I) (Savage et al., 2002), and (II) and (III), described herein.

(II) $R=$ ethyl
(III) $R=$ isopropyl

The cyclopentadienyl rings deviate slightly from an eclipsed geometry in (II), as evidenced by the $\mathrm{C} 1 n \cdots C g 1 \cdots C g 2 \cdots \mathrm{C} 2 n$ $(n=1-5)$ torsion angles ranging from -2.87 (14) to $-3.61(14)^{\circ}$. In (III), the angles are in the range 6.1 (3)$7.0(3)^{\circ}$, similar to the eclipsed geometry in (I), where the range is $0.8(4)-2.3(4)^{\circ}$. In contrast, this range of angles is 13.7 (2)-15.4 (3) ${ }^{\circ}$ in para-ferrocenylbenzoyl-L-alanine methyl ester (Savage et al., 2002).

The essentially linear molecular conformations adopted by (II) and (III) are comparable, with interplanar angles of $6.88(12)^{\circ}$ between the $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ and $-\mathrm{C}_{6} \mathrm{H}_{4}$ - rings in (II), $10.5(2)^{\circ}$ in (III) and 9.35 (13) ${ }^{\circ}$ in (I). The major differences are in the terminal $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 34-\mathrm{C} 33$ torsion angles, the value of which is $-0.8(2)^{\circ}$ in (II), $-18.2(5)^{\circ}$ in (III) and 171.2 (3) ${ }^{\circ}$ in (I). However, the disposition of the terminal alkoxy group, which gives a $\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$ torsion angle of

Figure 1
A view of the molecule of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A stereoview of the interactions in the crystal structure of (II).
$179.76(16)^{\circ}$ in (II) and $112.0(5)^{\circ}$ in (III), means that the methyl groups of the isopropyl moiety in (III) are oriented almost orthogonal to the ester CO_{2} plane (Figs. 1 and 3).

Analysis of the hydrogen bonding in (II) shows only two interactions of note, involving the substituted ring and the ester $\mathrm{O}=\mathrm{C}$ group as $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions (Table 2 and Fig. 2). Molecules of the ethyl ester form dimers through $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds, graph set $R_{2}^{2}(20)$ and, together with $\mathrm{Csp}{ }^{3}-\mathrm{H} \cdots \pi\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ interactions, these generate a one-dimensional column (irregular ladder). The molecules of the isopropyl ester, (III), aggregate through $\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{C}-\mathrm{H} \cdots \pi\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$ interactions (Table 4 and Fig. 4).

Analysis of the April 2002 Version of the Cambridge Structural Database using ConQuest Version 1.4 (Allen, 2002)

Figure 3
A view of the molecule of (III) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 4
A stereoview of the interactions in the crystal structure of (III). For the sake of clarity, the unit-cell box has been omitted.
for the mono-substituted para- $\mathrm{Fc}-\mathrm{C}_{6} \mathrm{H}_{4}-X$ group (X is any atom) was undertaken for structures which fulfil the threedimensional coordinates and $R<0.10$ criteria. A total of 13 relevant structures were found. The interplanar angle between the $\mathrm{C}_{5} \mathrm{H}_{4}$ and C_{6} rings varies between 2.2 and 29.1° for 17 examples, with a median of 12.8° (11 examples are within the range $7.7-19.3^{\circ}$). Our results above compare favourably with these values.

Experimental

Compounds (II) and (III) were prepared according to standard literature procedures. Analytical data for (II): m.p. 358-359 K (uncorrected); IR (KBr, $v, \mathrm{~cm}^{-1}$): 1678 ($\mathrm{C}=\mathrm{O}$); UV-vis, $\lambda_{\text {max }}$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: 360 (880), 445 (290) nm; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$, p.p.m.): $7.86(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.66(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $4.89\left[2 \mathrm{H}, t, J=1.8 \mathrm{~Hz}, o-\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 4.44[2 \mathrm{H}, t, J=1.8 \mathrm{~Hz}, m-$ $\left.\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 4.32\left(2 \mathrm{H}, q, J=7 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.03\left[5 \mathrm{H}, s, \eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, $1.33\left(3 \mathrm{H}, t,-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, δ, p.p.m.): 166.1, 145.5, 129.6, 127.2, 126.0, 83.0, 70.2, 69.9, 67.2, 60.9, 14.6. Analytical data for (III): m.p. $351-352 \mathrm{~K}$ (uncorrected); IR (KBr, ν, cm^{-1}): $1710(\mathrm{C}=\mathrm{O})$; UV-vis, $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right): 360$ (1120), 458 (302) nm; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$, p.p.m.): $7.87(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.44(2 \mathrm{H}$, $d, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.18\left[1 \mathrm{H}, m, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.64[2 \mathrm{H}, s, o-$ $\left.\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 4.32\left[2 \mathrm{H}, s, m-\eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 3.96\left[5 \mathrm{H}, s, \eta^{5}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right], 1.30[6 \mathrm{H}, t$, $\left.\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right] ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, δ, p.p.m.): 166.6, 145.2, 130.0, 128.5, 126.0, 83.9, 70.2, 70.1, 68.5, 67.3, 22.4.

Compound (II)

Crystal data
$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2}\right)\right] \quad D_{x}=1.425 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=334.18$
Mo $K \alpha$ radiation
Monoclinic, $P 2_{2_{1}} / c$
$a=7.9563$ (5) A
$b=16.3464$ (11) \AA
$c=12.0088(10) \AA$
$\beta=94.128(5)^{\circ}$
$V=1557.78$ (19) \AA^{3}
$Z=4$
Cell parameters from 80 reflections
$\theta=5.5-20.7^{\circ}$
$\mu=0.97 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Block, orange
$0.50 \times 0.45 \times 0.45 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer	$R_{\text {int }}=0.012$
$\omega / 2 \theta$ scans	$\theta_{\max }=28^{\circ}$
Absorption correction: ψ scan	$h=-10 \rightarrow 1$
\quad (North et al., 1968)	$k=-21 \rightarrow 1$
$T_{\min }=0.629, T_{\max }=0.646$	$l=-15 \rightarrow 15$
4875 measured reflections	4 standard reflections
3780 independent reflections	every 296 reflections
3276 reflections with $I>2 \sigma(I)$	intensity variation: $\pm 1 \%$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$ for (II).

$\mathrm{O} 1-\mathrm{C} 1$	$1.200(2)$	$\mathrm{C} 1-\mathrm{C} 34$	$1.489(2)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.3282(19)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.486(3)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.4503(19)$	$\mathrm{C} 11-\mathrm{C} 31$	$1.470(2)$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2$	$115.63(13)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$107.37(15)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$123.17(16)$	$\mathrm{C} 1-\mathrm{C} 34-\mathrm{C} 33$	$122.85(14)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 34$	$124.07(15)$	$\mathrm{C} 1-\mathrm{C} 34-\mathrm{C} 35$	$118.07(14)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 34$	$112.76(13)$		
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 34$	$-178.95(13)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 31-\mathrm{C} 36$	$7.9(2)$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$179.76(16)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 34-\mathrm{C} 33$	$178.40(17)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.079$
$S=1.05$
3780 reflections
200 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.039 P)^{2} \\
&+0.319 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Hydrogen-bonding and short-contact geometry ($\AA \AA^{\circ}$) for (II).
$C g 1$ is the centroid of the substituted cyclopentadienyl ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O1}^{\mathrm{i}}$	0.93	2.54	$3.360(3)$	147
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{C}^{\mathrm{ii}}$	0.97	2.87	$3.770(2)$	155

Symmetry codes: (i) $1-x, 1-y,-z$; (ii) $-x, 1-y,-z$.

Compound (III)

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}\right)\right]$
$M_{r}=348.21$
Monoclinic, $P 2_{1} / a$
$a=9.3406$ (9) \AA 。
$b=10.1663(6) \AA$
$c=17.9072(10) \AA$
$\beta=90.136(6)^{\circ}$
$V=1700.5(2) \AA^{3}$
$Z=4$
$D_{x}=1.360 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 72 reflections
$\theta=6.1-15.3^{\circ}$
$\mu=0.89 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Block, red
$0.39 \times 0.26 \times 0.15 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.769, T_{\text {max }}=0.875$
4440 measured reflections
3355 independent reflections
2439 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.006
$$

$R_{\text {int }}=0.06$
$\theta_{\text {max }}=26^{\circ}$
$h=-11 \rightarrow 1$
$k=-1 \rightarrow 12$
$l=-22 \rightarrow 22$
4 standard reflections every 296 reflections intensity variation: $\pm 1 \%$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0468 P)^{2} \\
&+0.7638 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.109$
$S=1.04$
3355 reflections
210 parameters
H-atom parameters constrained

Table 3
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (III).

$\mathrm{O} 1-\mathrm{C} 1$	$1.186(4)$	$\mathrm{C} 1-\mathrm{C} 34$	$1.485(4)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.321(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.440(7)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.481(4)$	$\mathrm{C} 2-\mathrm{C} 4$	$1.448(6)$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2$	$117.7(2)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 4$	$108.2(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$124.1(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4$	$114.8(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 34$	$123.8(3)$	$\mathrm{C} 1-\mathrm{C} 34-\mathrm{C} 33$	$118.2(3)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 34$	$112.1(3)$	$\mathrm{C} 1-\mathrm{C} 34-\mathrm{C} 35$	$123.7(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$107.9(4)$		
			$112.0(5)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$5.9(5)$	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	

Table 4
Hydrogen-bonding and short-contact geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for (III).
$C g 3$ is the centroid of the phenylene ring system.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.98	2.25	$2.696(4)$	106
$\mathrm{C} 12-\mathrm{H} 12 \cdots C g 3^{\mathrm{i}}$	0.93	2.75	$3.658(3)$	167

Symmetry code: (i) $x-\frac{3}{2},-\frac{1}{2}-y, z$.

For compounds (II) and (III), space groups $P 2_{1} / c$ and $P 2_{1} / a$, respectively, were uniquely assigned from the systematic absences and confirmed by the analyses. H atoms were treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$.

For both compounds, data collection: XSCANS (Siemens, 1994); cell refinement: $X S C A N S$; data reduction: $X S C A N S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and PLATON (Spek, 1998); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998).

FPA thanks the National Institute for Cellular Biotechnology, for a studentship under the Irish Government PRTLI\#3 funding scheme. JFG thanks Dublin City University for the purchase of a $P 4$ diffractometer and computer system. DS thanks the School of Chemical Sciences and the Irish-American Partnership for funding to undertake chemical research.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1238). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Chesney, A., Bryce, M. R., Batsanov, A. S., Howard, J. A. K. \& Goldenberg, L. M. (1998). J. Chem. Soc. Chem. Commun. pp. 677-679.

Even, M., Heinrich, B., Guillon, D., Guldi, D. M., Prato, M. \& Deschenaux, R. (2001). Chem. Eur. J. 7, 2595-2604.

Ferguson, G. (1998). PREP8. University of Guelph, Canada.
Gallagher, J. F., Kenny, P. T. M. \& Sheehy, M. J. (1999a). Inorg. Chem. Commun. 2, 200-204.
Gallagher, J. F., Kenny, P. T. M. \& Sheehy, M. J. (1999b). Inorg. Chem. Commun. 2, 327-330.
Glidewell, C., Ahmed, S. Z., Gallagher, J. F. \& Ferguson, G. (1997). Acta Cryst. C53, 1775-1778.
Hudson, R. D. A.., Asselsbergh, I., Clays, K., Cuffe, L. P., Gallagher, J. F., Manning, A. R., Persoons, A. \& Wostyn, K. (2001). J. Organomet. Chem. 637-639, 435-444.
Hudson, R. D. A., Manning, A. R., Nolan, D. F., Asselsbergh, I., Van Boxel, R., Persoons, A. \& Gallagher, J. F. (2001). J. Organomet. Chem. 619, 141-151.
Kraatz, H.-B., Leek, D. M., Houmam, A., Enright, G. D., Lustyk, J. \& Wayner, D. D. M. (1999). J. Organomet. Chem. 589, 38-49.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Savage, D., Gallagher, J. F., Ida, Y. \& Kenny, P. T. M. (2002). Inorg. Chem. Coттип. 5, 1034-1040.
Seo, J. S., Yoo, Y. S. \& Choi, M. G. (2001). J. Mater. Chem. 11, 1332-1338.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1998). PLATON. University of Utrecht, The Netherlands.
Zakaria, C. M., Ferguson, G., Lough, A. J. \& Glidewell, C. (2002). Acta Cryst. C58, $\mathrm{m} 1-\mathrm{m} 4$.

[^0]: Copyright © International Union of Crystallography
 Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

