76,424 research outputs found

    Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake

    Get PDF
    Fast-swimming hydromedusan jellyfish possess a characteristic funnel-shaped velum at the exit of their oral cavity that interacts with the pulsed jets of water ejected during swimming motions. It has been previously assumed that the velum primarily serves to augment swimming thrust by constricting the ejected flow in order to produce higher jet velocities. This paper presents high-speed video and dye-flow visualizations of free-swimming Nemopsis bachei hydromedusae, which instead indicate that the time-dependent velar kinematics observed during the swimming cycle primarily serve to optimize vortices formed by the ejected water rather than to affect the speed of the ejected flow. Optimal vortex formation is favorable in fast-swimming jellyfish because, unlike the jet funnelling mechanism, it allows for the minimization of energy costs while maximizing thrust forces. However, the vortex `formation number' corresponding to optimality in N. bachei is substantially greater than the value of 4 found in previous engineering studies of pulsed jets from rigid tubes. The increased optimal vortex formation number is attributable to the transient velar kinematics exhibited by the animals. A recently developed model for instantaneous forces generated during swimming motions is implemented to demonstrate that transient velar kinematics are required in order to achieve the measured swimming trajectories. The presence of velar structures in fast-swimming jellyfish and the occurrence of similar jet-regulating mechanisms in other jet-propelled swimmers (e.g. the funnel of squid) appear to be a primary factor contributing to success of fast-swimming jetters, despite their primitive body plans

    Localised states in an extended Swift-Hohenberg equation

    Get PDF
    Recent work on the behaviour of localised states in pattern forming partial differential equations has focused on the traditional model Swift-Hohenberg equation which, as a result of its simplicity, has additional structure --- it is variational in time and conservative in space. In this paper we investigate an extended Swift-Hohenberg equation in which non-variational and non-conservative effects play a key role. Our work concentrates on aspects of this much more complicated problem. Firstly we carry out the normal form analysis of the initial pattern forming instability that leads to small-amplitude localised states. Next we examine the bifurcation structure of the large-amplitude localised states. Finally we investigate the temporal stability of one-peak localised states. Throughout, we compare the localised states in the extended Swift-Hohenberg equation with the analogous solutions to the usual Swift-Hohenberg equation

    The Genus Phragmatobia in North America, with the Description of a New Species (Lepidoptera: Arctiidae)

    Get PDF
    Excerpt: This paper, based on the examination of 1,879 specimens, serves to resolve the taxonomic problems involving the three North American species of Phragmatobia. The genus Phragmatobia, the ruby tiger moths, has had a checkered history since it was described by Stephens in 1829 (type, by monotypy, Noctua j\u27uliginosa Linnaeus, 1758). Although many species have been described in or transferred to this genus, in both the Old and New Worlds, most of them have been removed to other genera. By 1902 Dyar recognized only two North American species, a status since then unchanged (McDunnough, 1938; Forbes, 1960). Despite the recent stability of the names, there has been much confusion as to which names to apply to particular specimens. This problem is resolved below, with the description of a third North American species, long confused with the two named species

    Morphological diversity of medusan lineages constrained by animal–fluid interactions

    Get PDF
    Cnidarian medusae, commonly known as jellyfish, represent the earliest known animal taxa to achieve locomotion using muscle power. Propulsion by medusae requires the force of bell contraction to generate forward thrust. However, thrust production is limited in medusae by the primitive structure of their epitheliomuscular cells. This paper demonstrates that constraints in available locomotor muscular force result in a trade-off between high-thrust swimming via jet propulsion and high-efficiency swimming via a combined jet-paddling propulsion. This trade-off is reflected in the morphological diversity of medusae, which exhibit a range of fineness ratios (i.e. the ratio between bell height and diameter) and small body size in the high-thrust regime, and low fineness ratios and large body size in the high-efficiency regime. A quantitative model of the animal–fluid interactions that dictate this trade-off is developed and validated by comparison with morphological data collected from 660 extant medusan species ranging in size from 300 µm to over 2 m. These results demonstrate a biomechanical basis linking fluid dynamics and the evolution of medusan bell morphology. We believe these to be the organising principles for muscle-driven motility in Cnidaria

    The Ohio Individual Farrowing House

    Get PDF
    Exact date of bulletin unknown.PDF pages:

    Winter ozone formation and VOC incremental reactivities in the Upper Green River Basin of Wyoming

    Get PDF
    The Upper Green River Basin (UGRB) in Wyoming experiences ozone episodes in the winter when the air is relatively stagnant and the ground is covered by snow. A modeling study was carried out to assess relative contributions of oxides of nitrogen (NO_x) and individual volatile organic compounds (VOCs), and nitrous acid (HONO) in winter ozone formation episodes in this region. The conditions of two ozone episodes, one in February 2008 and one in March 2011, were represented using a simplified box model with all pollutants present initially, but with the detailed SAPRC-07 chemical mechanism adapted for the temperature and radiation conditions arising from the high surface albedo of the snow that was present. Sensitivity calculations were conducted to assess effects of varying HONO inputs, ambient VOC speciation, and changing treatments of temperature and lighting conditions. The locations modeled were found to be quite different in VOC speciation and sensitivities to VOC and NO_x emissions, with one site modeled for the 2008 episode being highly NO_x-sensitive and insensitive to VOCs and HONO, and the other 2008 site and both 2011 sites being very sensitive to changes in VOC and HONO inputs. Incremental reactivity scales calculated for VOC-sensitive conditions in the UGRB predict far lower relative contributions of alkanes to ozone formation than in the traditional urban-based MIR scale and that the major contributors to ozone formation were the alkenes and the aromatics, despite their relatively small mass contributions. The reactivity scales are affected by the variable ambient VOC speciation and uncertainties in ambient HONO levels. These box model calculations are useful for indicating general sensitivities and reactivity characteristics of these winter UGRB episodes, but fully three-dimensional models will be required to assess ozone abatement strategies in the UGRB

    Electromagnetic Deflection of Spinning Particles

    Full text link
    We show that it is possible to obtain self-consistent and physically acceptable relativistic classical equations of motion for a point-like spin-half particle possessing an electric charge and a magnetic dipole moment, directly from a manifestly covariant Lagrangian, if the classical degrees of freedom are appropriately chosen. It is shown that the equations obtained encompass the well-tested Lorentz force and Thomas--Bargmann--Michel--Telegdi spin equations, as well as providing a definite specification of the classical _magnetic_dipole_ force_, whose exact form has been the subject of recent debate. Radiation reaction---the force and torque on an accelerated particle due to its self-interaction---is neglected at this stage.Comment: 18 pp. (latex, uses revtex 3), UM-P-92/9

    Prediction of bond dissociation energies and transition state barriers by a modified complete basis set model chemistry

    Get PDF
    The complete basis set model chemistries CBS-4 and CBS-q were modified using density functional theory for the geometry optimization step of these methods. The accuracy of predicted bond dissociation energies and transition state barrier heights was investigated based on geometry optimizations using the B3LYP functional with basis set sizes ranging from 3-21G(d,p) to 6-311G(d,p). Transition state barrier heights can be obtained at CBS-q with B3LYP/6-31G(d,p) geometries with rms error of 1.7 kcal/mol within a test set of ten transition state species. The method should be applicable to molecules with up to eight or more heavy atoms. Use of B3LYP/6-311G(d,p) for geometry optimizations leads to further improvement of CBS-q barrier heights with a rms error of 1.4 kcal/mol. For reference, the CBS-QCI/APNO model chemistry was evaluated and is shown to provide very reliable predictions of barrier heights (rms error=1.0 kcal/mol)

    The Foldy-Wouthuysen transformation

    Get PDF
    The Foldy-Wouthuysen transformation of the Dirac Hamiltonian is generally taught as simply a mathematical trick that allows one to obtain a two-component theory in the low-energy limit. It is not often emphasized that the transformed representation is the only one in which one can take a meaningful *classical limit*, in terms of particles and antiparticles. We briefly review the history and physics of this transformation.Comment: Standard LaTeX, 6 page

    Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses

    Get PDF
    Flow patterns generated by medusan swimmers such as jellyfish are known to differ according the morphology of the various animal species. Oblate medusae have been previously observed to generate vortex ring structures during the propulsive cycle. Owing to the inherent physical coupling between locomotor and feeding structures in these animals, the dynamics of vortex ring formation must be robustly tuned to facilitate effective functioning of both systems. To understand how this is achieved, we employed dye visualization techniques on scyphomedusae (Aurelia aurita) observed swimming in their natural marine habitat. The flow created during each propulsive cycle consists of a toroidal starting vortex formed during the power swimming stroke, followed by a stopping vortex of opposite rotational sense generated during the recovery stroke. These two vortices merge in a laterally oriented vortex superstructure that induces flow both toward the subumbrellar feeding surfaces and downstream. The lateral vortex motif discovered here appears to be critical to the dual function of the medusa bell as a flow source for feeding and propulsion. Furthermore, vortices in the animal wake have a greater volume and closer spacing than predicted by prevailing models of medusan swimming. These effects are shown to be advantageous for feeding and swimming performance, and are an important consequence of vortex interactions that have been previously neglected
    corecore