54 research outputs found

    Exploration and categorization of pre-service physics teachers' alternative conceptions in superconductivity and nanotechnology

    Get PDF
    An exploratory case study research design was followed to explore and categorize 23 pre-service physics teachers’ understanding in the fields of superconductivity and nanotechnology at the Sultan Qaboos University in Oman. To elicit their responses, a five-stage categorical framework analysis was used. The five stages included identification of the thematic framework, familiarization, coding, placing the categories on a chart and finally, interpretation. A conceptual survey test (Conceptual Survey of Superconductivity and Nanotechnology) was administered to the pre-service physics teachers to form four independently homogenous ability focus groups. This was followed by focus group discussions whose data were analyzed to group their conceptions in both the epistemological as well as ontological categories. From the focus group discussions, six categories were considered from previous studies, namely; lateral alternative conceptions, ontological conceptions, naïve physics, Ohm’s p-primes, mixed conceptions and loose ideas. Since this was a pre-instructional study, naïve physics ideas and lateral alternative conceptions were dominant. Naïve physics refers to the untrained student or human perception of various physical phenomena while lateral alternative conception refers the misconceptions individuals have on ideas that may be inconsistent with scientifically acceptable facts. Findings indicate that the pre-service teachers’ conceptions deviated from canonical scientific concepts, are diversified and inconsistent. The knowledge on pre-instructional conceptions will influence the development of evidence-based pedagogy, which is fundamental to the development of an effective physics education curriculum.Institute for Science and Technology Education (ISTE)M. Sc. (Physics Education

    Estimating the contribution of different age strata to vaccine serotype pneumococcal transmission in the pre vaccine era: a modelling study.

    Get PDF
    BACKGROUND: Herd protection through interruption of transmission has contributed greatly to the impact of pneumococcal conjugate vaccines (PCVs) and may enable the use of cost-saving reduced dose schedules. To aid PCV age targeting to achieve herd protection, we estimated which population age groups contribute most to vaccine serotype (VT) pneumococcal transmission. METHODS: We used transmission dynamic models to mirror pre-PCV epidemiology in England and Wales, Finland, Kilifi in Kenya and Nha Trang in Vietnam where data on carriage prevalence in infants, pre-school and school-aged children and adults as well as social contact patterns was available. We used Markov Chain Monte Carlo methods to fit the models and then extracted the per capita and population-based contribution of different age groups to VT transmission. RESULTS: We estimated that in all settings, < 1-year-old infants cause very frequent secondary vaccine type pneumococcal infections per capita. However, 1-5-year-old children have the much higher contribution to the force of infection at 51% (28, 73), 40% (27, 59), 37% (28, 48) and 67% (41, 86) of the total infection pressure in E&W, Finland, Kilifi and Nha Trang, respectively. Unlike the other settings, school-aged children in Kilifi were the dominant source for VT infections with 42% (29, 54) of all infections caused. Similarly, we estimated that the main source of VT infections in infants are pre-school children and that in Kilifi 39% (28, 51) of VT infant infections stem from school-aged children whereas this was below 15% in the other settings. CONCLUSION: Vaccine protection of pre-school children is key for PCV herd immunity. However, in high transmission settings, school-aged children may substantially contribute to transmission and likely have waned much of their PCV protection under currently recommended schedules

    Pneumococcal conjugate vaccine induced IgG and nasopharyngeal carriage of pneumococci: Hyporesponsiveness and immune correlates of protection for carriage.

    Get PDF
    BACKGROUND: Prior studies have demonstrated hyporesponsiveness to pneumococcal conjugate vaccines (PCVs) when administered in the presence of homologous carriage. This may be substantially more important in Africa where carriage prevalence is high. Deriving a correlate of protection (CoP) for carriage is important in guiding the future use of extended PCVs as population control of pneumococcal disease by vaccination is now focused principally on its indirect effect. We therefore explored the complex relationship between existing carriage and vaccine responsiveness, and between serum IgG levels and risk of acquisition. METHODS: We undertook secondary analyses of data from two previously published clinical trials of the safety and immunogenicity of PCV in Kenya. We compared responses to vaccination between serotype-specific carriers and non-carriers at vaccination. We assessed the risk of carriage acquisition in relation to PCV-induced serum IgG levels using either a step- or continuous-risk function. RESULTS: For newborns, the immune response among carriers was 51-82% lower than that among non-carriers, depending on serotype. Among toddlers, for serotypes 6B, 14 and 19F the post-vaccination response among carriers was lower by between 29 and 70%. The estimated CoP against acquisition ranged from 0.26 to 1.93?g/mL across serotypes, however, these thresholds could not be distinguished statistically from a model with constant probability of carriage independent of assay value. CONCLUSION: We have confirmed hyporesponsiveness in an equatorial African setting in both infants and toddlers. Population responses to vaccination are likely to improve with time as carriage prevalence of vaccine serotypes is reduced. We have not found clear correlates of protection against carriage acquisition among toddlers in this population. Assessing the potential of new vaccines through the use of CoP against carriage is still difficult as there are no clear-cut serotype specific correlates

    Effect of Maternally Derived Anti-protein and Anticapsular IgG Antibodies on the Rate of Acquisition of Nasopharyngeal Carriage of Pneumococcus in Newborns.

    Get PDF
    Background: In developing countries, introduction of pneumococcal conjugate vaccine has not eliminated circulation of vaccine serotypes. Vaccinating pregnant mothers to increase antibody concentrations in their newborn infants may reduce the acquisition of pneumococcal carriage and subsequent risk of disease. We explored the efficacy of passive immunity, attributable to anti-protein and anticapsular pneumococcal antibodies, against acquisition of carriage. Methods: We examined the rate of nasopharyngeal acquisition of pneumococci in the first 90 days of life associated with varying anticapsular and anti-protein antibody concentrations in infant cord/maternal venous blood in Kilifi, Kenya. We used multivariable Cox proportional hazard models to estimate continuous functions relating acquisition of nasopharyngeal carriage to the concentration of maternally derived antibody. Results: Cord blood or maternal venous samples were collected from 976 mother-infant pairs. Pneumococci were acquired 561 times during 33,905 person-days of follow-up. Increasing concentrations of anti-protein antibodies were associated with either a reduction (PhtD1, PspAFam2, Spr0096, StkP) or, paradoxically, an increase (CbpA, LytC, PcpA, PiaA, PspAFam1, RrgBT4) in acquisition rate. We observed a nonsignificant reduction in the incidence of homologous carriage acquisition with high concentrations of maternally derived anticapsular antibodies to 5 serotypes (6A, 6B, 14, 19F, and 23F). Conclusion: The protective efficacy of several anti-protein antibodies supports the strategy of maternal vaccination to protect young infants from carriage and invasive disease. We were not able to demonstrate that passive anticapsular antibodies were protective against carriage acquisition at naturally occurring concentrations though it remains possible they may do so at the higher concentrations elicited by vaccination

    Strong Gradients in Forest Sensitivity to Climate Change Revealed by Dynamics of Forest Fire Cycles in the Post Little Ice Age Era

    Get PDF
    The length of the fire cycle is a critical factor affecting the vegetation cover in boreal and temperate regions. However, its responses to climate change remain poorly understood. We reanalyzed data from earlier studies of forest age structures at the landscape level, in order to map the evolution of regional fire cycles across Eastern North American boreal and temperate forests, following the termination of the Little Ice Age (LIA). We demonstrated a well-defined spatial pattern of post-LIA changes in the length of fire cycles toward lower fire activity during the 1800s and 1900s. The western section of Eastern North America (west of 77°W) experienced a decline in fire activity as early as the first half of the 1800s. By contrast, the eastern section showed these declines as late as the early 1900s. During a regionally fire-prone period of the 1910s–1920s, forests in the western section of Eastern boreal North America burned more than forests in the eastern section. The climate appeared to dominate over vegetation composition and human impacts in shaping the geographical pattern of the post-LIA change in fire activity. Changes in the atmospheric circulation patterns following the termination of the LIA, specifically changes in Arctic Oscillation and the strengthening of the Continental Polar Trough, were likely drivers of the regional fire dynamics

    Assessing the efficiency of catch-up campaigns for the introduction of pneumococcal conjugate vaccine: a modelling study based on data from PCV10 introduction in Kilifi, Kenya.

    Get PDF
    BACKGROUND: The World Health Organisation recommends the use of catch-up campaigns as part of the introduction of pneumococcal conjugate vaccines (PCVs) to accelerate herd protection and hence PCV impact. The value of a catch-up campaign is a trade-off between the costs of vaccinating additional age groups and the benefit of additional direct and indirect protection. There is a paucity of observational data, particularly from low- and middle-income countries, to quantify the optimal breadth of such catch-up campaigns. METHODS: In Kilifi, Kenya, PCV10 was introduced in 2011 using the three-dose Expanded Programme on Immunisation infant schedule and a catch-up campaign in children <5 years old. We fitted a transmission dynamic model to detailed local data, including nasopharyngeal carriage and invasive pneumococcal disease (IPD), to infer the marginal impact of the PCV catch-up campaign over hypothetical routine cohort vaccination in that setting and to estimate the likely impact of alternative campaigns and their dose efficiency. RESULTS: We estimated that, within 10 years of introduction, the catch-up campaign among children <5 years old prevents an additional 65 (48-84) IPD cases across age groups, compared to PCV cohort introduction alone. Vaccination without any catch-up campaign prevented 155 (121-193) IPD cases and used 1321 (1058-1698) PCV doses per IPD case prevented. In the years after implementation, the PCV programme gradually accrues herd protection, and hence its dose efficiency increases: 10 years after the start of cohort vaccination alone the programme used 910 (732-1184) doses per IPD case averted. We estimated that a two-dose catch-up among children <1 year old uses an additional 910 (732-1184) doses per additional IPD case averted. Furthermore, by extending a single-dose catch-up campaign to children aged 1 to <2 years and subsequently to those aged 2 to <5 years, the campaign uses an additional 412 (296-606) and 543 (403-763) doses per additional IPD case averted. These results were not sensitive to vaccine coverage, serotype competition, the duration of vaccine protection or the relative protection of infants. CONCLUSIONS: We find that catch-up campaigns are a highly dose-efficient way to accelerate population protection against pneumococcal disease

    Vaccine strategies to reduce the burden of pneumococcal disease in HIV-infected adults in Africa.

    Get PDF
    INTRODUCTION: Streptococcus pneumoniae is the leading cause of invasive bacterial disease, globally. Despite antiretroviral therapy, adults infected with human immunodeficiency virus (HIV) are also at high risk of pneumococcal carriage and disease. Pneumococcal conjugate vaccines (PCVs) provide effective protection against vaccine serotype (VT) carriage and disease in children, and have been introduced worldwide, including most HIV-affected low- and middle-income countries. Unlike high-income countries, the circulation of VT persists in the PCV era in some low-income countries and results in a continued high burden of pneumococcal disease in HIV-infected adults. Moreover, no routine vaccination that directly protects HIV-infected adults in such settings has been implemented. AREAS COVERED: Nonsystematic review on the pneumococcal burden in HIV-infected adults and vaccine strategies to reduce this burden. EXPERT OPINION: We propose and discuss the relative merit of changing the infant PCV program to use (1a) a two prime plus booster dose schedule, (1b) a two prime plus booster dose schedule with an additional booster dose at school entry, to directly vaccinate (2a) HIV-infected adults or vaccinating (2b) HIV-infected pregnant women for direct protection, with added indirect protection to the high-risk neonates. We identify key knowledge gaps for such an evaluation and propose strategies to overcome them

    Sustained reduction in vaccine-type invasive pneumococcal disease despite waning effects of a catch-up campaign in Kilifi, Kenya: A mathematical model based on pre-vaccination data.

    Get PDF
    BACKGROUND: In 2011, Kenya introduced the 10-valent pneumococcal conjugate vaccine together with a catch-up campaign for children aged <5years in Kilifi County. In a post-vaccination surveillance study based in Kilifi, there was a substantial decline in invasive pneumococcal disease (IPD). However, given the continued circulation of the vaccine serotypes it is possible that vaccine-serotype disease may re-emerge once the effects of the catch-up campaign wear off. METHODS: We developed a compartmental, age-structured dynamic model of pneumococcal carriage and invasive disease for three serotype groups: the 10-valent vaccine serotypes and two groups of non-vaccine serotypes based on their susceptibility to mutual competition. The model was calibrated to age- and serotype-specific data on carriage and IPD in the pre-vaccination era and used to predict carriage prevalence and IPD up to ten years post-vaccination in Kilifi. The model was validated against the observed carriage prevalence after vaccine introduction. RESULTS: The model predicts a sustained reduction in vaccine-type pneumococcal carriage prevalence from 33% to 8% in infants and from 30% to 8% in 1-5year olds over the 10-year period following vaccine introduction. The incidence of IPD is predicted to decline across all age groups resulting in an overall reduction of 56% in the population, corresponding to 10.4 cases per 100,000 per year. The vaccine-type IPD incidence is estimated to decline by 83% while non-vaccine-type IPD incidence is predicted to increase by 52%. The model's predictions of carriage prevalence agrees well with the observed data in the first five years post-vaccination. CONCLUSION: We predict a sustained and substantial decline in IPD through PCV vaccination and that the current regimen is insufficient to fully eliminate vaccine-serotype circulation in the model. We show that the observed impact is likely to be sustained despite waning effects of the catch-up campaign

    Rates of acquisition of pneumococcal colonization and transmission probabilities, by serotype, among newborn infants in Kilifi District, Kenya.

    Get PDF
    BACKGROUND: Herd protection and serotype replacement disease following introduction of pneumococcal conjugate vaccine (PCV) are attributable to the vaccine's impact on colonization. Prior to vaccine introduction in Kenya, we did an epidemiological study to estimate the rate of pneumococcal acquisition, by serotype, in an uncolonized population. METHODS: Nasopharyngeal swab specimens were taken from newborns aged ≤ 7 days and weekly thereafter for 13 weeks. Parents, and siblings aged <10 years, were swabbed at monthly intervals. Swabs were transported in skim milk-tryptone-glucose-glycerin and cultured on gentamicin blood agar. Pneumococci were serotyped by the Quellung reaction. We used survival analysis and Cox regression analysis to examine serotype-specific acquisition rates and risk factors and calculated transmission probabilities from the pattern of acquisitions within the family. RESULTS: Of 1404 infants recruited, 887 were colonized by 3 months of age, with the earliest acquisition detected on the first day of life. The median time to acquisition was 38.5 days. The pneumococcal acquisition rate was 0.0189 acquisitions/day (95% confidence interval, .0177-.0202 acquisitions/day). Serotype-specific acquisition rates varied from 0.00002-0.0025 acquisitions/day among 49 different serotypes. Season, coryza, and exposure to cigarettes, cooking fumes, and other children in the home were each significant risk factors for acquisition. The transmission probability per 30-day duration of contact with a carrier was 0.23 (95% CI, .20-.26). CONCLUSIONS: Newborn infants in Kilifi have high rates of nasopharyngeal acquisition of pneumococci. Half of these acquisitions involve serotypes not included in any current vaccine. Several risk factors are modifiable through intervention. Newborns represent a consistent population of pneumococcus-naive individuals in which to estimate the impact of PCV on transmission

    Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association study

    Get PDF
    Background: Human genetic factors are important determinants of malaria risk. We investigated associations between multiple candidate polymorphisms—many related to the structure or function of red blood cells—and risk for severe Plasmodium falciparum malaria and its specific phenotypes, including cerebral malaria, severe malaria anaemia, and respiratory distress. Methods: We did a case-control study in Kilifi County, Kenya. We recruited as cases children presenting with severe malaria to the high-dependency ward of Kilifi County Hospital. We included as controls infants born in the local community between Aug 1, 2006, and Sept 30, 2010, who were part of a genetics study. We tested for associations between a range of candidate malaria-protective genes and risk for severe malaria and its specific phenotypes. We used a permutation approach to account for multiple comparisons between polymorphisms and severe malaria. We judged p values less than 0·005 significant for the primary analysis of the association between candidate genes and severe malaria. Findings: Between June 11, 1995, and June 12, 2008, 2244 children with severe malaria were recruited to the study, and 3949 infants were included as controls. Overall, 263 (12%) of 2244 children with severe malaria died in hospital, including 196 (16%) of 1233 with cerebral malaria. We investigated 121 polymorphisms in 70 candidate severe malaria-associated genes. We found significant associations between risk for severe malaria overall and polymorphisms in 15 genes or locations, of which most were related to red blood cells: ABO, ATP2B4, ARL14, CD40LG, FREM3, INPP4B, G6PD, HBA (both HBA1 and HBA2), HBB, IL10, LPHN2 (also known as ADGRL2), LOC727982, RPS6KL1, CAND1, and GNAS. Combined, these genetic associations accounted for 5·2% of the variance in risk for developing severe malaria among individuals in the general population. We confirmed established associations between severe malaria and sickle-cell trait (odds ratio [OR] 0·15, 95% CI 0·11–0·20; p=2·61 × 10−58), blood group O (0·74, 0·66–0·82; p=6·26 × 10−8), and –α3·7-thalassaemia (0·83, 0·76–0·90; p=2·06 × 10−6). We also found strong associations between overall risk of severe malaria and polymorphisms in both ATP2B4 (OR 0·76, 95% CI 0·63–0·92; p=0·001) and FREM3 (0·64, 0·53–0·79; p=3·18 × 10−14). The association with FREM3 could be accounted for by linkage disequilibrium with a complex structural mutation within the glycophorin gene region (comprising GYPA, GYPB, and GYPE) that encodes for the rare Dantu blood group antigen. Heterozygosity for Dantu was associated with risk for severe malaria (OR 0·57, 95% CI 0·49–0·68; p=3·22 × 10−11), as was homozygosity (0·26, 0·11–0·62; p=0·002). Interpretation: Both ATP2B4 and the Dantu blood group antigen are associated with the structure and function of red blood cells. ATP2B4 codes for plasma membrane calcium-transporting ATPase 4 (the major calcium pump on red blood cells) and the glycophorins are ligands for parasites to invade red blood cells. Future work should aim at uncovering the mechanisms by which these polymorphisms can result in severe malaria protection and investigate the implications of these associations for wider health. Funding: Wellcome Trust, UK Medical Research Council, European Union, and Foundation for the National Institutes of Health as part of the Bill &amp; Melinda Gates Grand Challenges in Global Health Initiative
    • …
    corecore