1,155 research outputs found

    Orbital obliquities of transiting planets from starspot occultations

    Get PDF
    When a planet passes in front of a starspot during a transit of its host star, it causes a small upward blip in the light curve. Modelling the transit with the starspot allows the size, brightness and position of the spot to be measured. If the same spot can be observed in two different transits, it is possible to track the motion of the spot due to the rotation of the star. The rotation period and velocity of the star (Prot and Vsini) and the sky-projected orbital obliquity of the system (lambda) can then be determined. If one has three or more observations of the same spot, the true orbital obliquity (psi) can be measured. We are performing this analysis for a number of cool stars orbited by transiting planets. We present our results so far and compile a catalogue of lambda and psi measurements from spot crossing events. The method is particularly useful for cool stars, and is therefore complementary to studies of the Rossiter-McLaughlin effect, which perform better on hotter and faster-rotating stars.Comment: Poster presentation at Cool Stars 19, Uppsala, June 2016. 6 pages, 6 figures, 1 table. To be published by Zenod

    Cognitive function in people with and without freezing of gait in Parkinson’s disease

    Get PDF
    Freezing of gait (FOG) is common in people with Parkinson’s disease (PD) which is extremely debilitating. One hypothesis for the cause of FOG episodes is impaired cognitive control, however, this is still in debate in the literature. We aimed to assess a comprehensive range of cognitive tests in older adults and people with Parkinson’s with and without FOG and associate FOG severity with cognitive performance. A total of 227 participants took part in the study which included 80 healthy older adults, 81 people with PD who did not have FOG and 66 people with PD and FOG. A comprehensive battery of neuropsychological assessments tested cognitive domains of global cognition, executive function/attention, working memory, and visuospatial function. The severity of FOG was assessed using the new FOG questionnaire and an objective FOG severity score. Cognitive performance was compared between groups using an ANCOVA adjusting for age, gender, years of education and disease severity. Correlations between cognitive performance and FOG severity were analyzed using partial correlations. Cognitive differences were observed between older adults and PD for domains of global cognition, executive function/attention, and working memory. Between those with and without FOG, there were differences for global cognition and executive function/attention, but these differences disappeared when adjusting for covariates. There were no associations between FOG severity and cognitive performance. This study identified no significant difference in cognition between those with and without FOG when adjusting for covariates, particularly disease severity. This may demonstrate that complex rehabilitation programs may be undertaken in those with FOG

    Physical properties and radius variations in the HAT-P-5 planetary system from simultaneous four-colour photometry

    Get PDF
    The radii of giant planets, as measured from transit observations, may vary with wavelength due to Rayleigh scattering or variations in opacity. Such an effect is predicted to be large enough to detect using ground-based observations at multiple wavelengths. We present defocussed photometry of a transit in the HAT-P-5 system, obtained simultaneously through Stromgren u, Gunn g and r, and Johnson I filters. Two more transit events were observed through a Gunn r filter. We detect a substantially larger planetary radius in u, but the effect is greater than predicted using theoretical model atmospheres of gaseous planets. This phenomenon is most likely to be due to systematic errors present in the u-band photometry, stemming from variations in the transparency of Earth's atmosphere at these short wavelengths. We use our data to calculate an improved orbital ephemeris and to refine the measured physical properties of the system. The planet HAT-P-5b has a mass of 1.06 +/- 0.11 +/- 0.01 Mjup and a radius of 1.252 +/- 0.042 +/- 0.008 Rjup (statistical and systematic errors respectively), making it slightly larger than expected according to standard models of coreless gas-giant planets. Its equilibrium temperature of 1517 +/- 29 K is within 60K of that of the extensively-studied planet HD 209458b.Comment: Version 2 corrects the accidental omission of one author in the arXiv metadata. Accepted for publication in MNRAS. 9 pages, 4 figures, 7 tables. The properties of HAT-P-5 have been added to the Transiting Extrasolar Planet Catalogue at http://www.astro.keele.ac.uk/~jkt/tepcat

    Geometric Solution to the Angles-Only Initial Orbit Determination Problem

    Full text link
    Initial orbit determination (IOD) from line-of-sight (i.e., bearing) measurements is a classical problem in astrodynamics. Indeed, there are many well-established methods for performing the IOD task when given three line-of-sight observations at known times. Interestingly, and in contrast to these existing methods, concepts from algebraic geometry may be used to produce a purely geometric solution. This idea is based on the fact that bearings from observers in general position may be used to directly recover the shape and orientation of a three-dimensional conic (e.g., a Keplerian orbit) without any need for knowledge of time. In general, it is shown that five bearings at unknown times are sufficient to recover the orbit -- without the use of any type of initial guess and without the need to propagate the orbit. Three bearings are sufficient for purely geometric IOD if the orbit is known to be (approximately) circular. The method has been tested over different scenarios, including one where extra observations make the system of equations over-determined.Comment: 31 pages excluding back matter, 14 figure

    Assessment of the ability of open- and closed-loop cueing to improve turning and freezing in people with Parkinson’s disease

    Get PDF
    Turning impairments are common in Parkinson's disease (PD) and can elicit freezing of gait (FoG). Extensive examination of open-loop cueing interventions has demonstrated that they can ameliorate gait deficits in PD; less is known about efficacy to improve turning. Here, we investigate the immediate effectiveness of open- and closed-loop cueing in improving turning characteristics in people with PD. Twenty-five subjects with and 18 subjects without FoG participated in the study. Subjects turned in place for one minute under single- and dual-task for 3 randomized conditions: (i) Baseline; (ii) Turning to the beat of a metronome (open-loop); and (iii) Turning with phase-dependent tactile biofeedback (closed-loop). Objective measures of freezing, such as % time spent freezing and FoG-ratio, significantly improved when turning with both open-loop and closed-loop cueing compared to baseline. Dual-tasking did not worsen FoG in freezers, but significantly slowed down turns in both groups. Both cueing modalities significantly improved turning smoothness in both groups, but reduced turning velocity and number of turns compared to baseline. Both open and closed-loop cueing markedly improved turning in people with PD. These preliminary observations warrant further exploration of vibrotactile closed-loop cueing to improve mobility in everyday life

    Spin-size disorder model for granular superconductors with charging effects

    Full text link
    A quantum pseudo-spin model with random spin sizes is introduced to study the effects of charging-energy disorder on the superconducting transition in granular superconducting materials. Charging-energy effects result from the small electrical capacitance of the grains when the Coulomb charging energy is comparable to the Josephson coupling energy. In the pseudo-spin model, randomness in the spin size is argued to arise from the inhomogeneous grain-size distribution. For a particular bimodal spin-size distribution, the model describes percolating granular superconductors. A mean-field theory is developed to obtain the phase diagram as a function of temperature, average charging energy and disorder.Comment: 4 pages, 2 figure

    Respiratory muscle deoxygenation during exercise in patients with heart failure demonstrated with near-infrared spectroscopy

    Get PDF
    AbstractExertional dyspnea in patients with heart failure may be due, in part, to respiratory muscle underperfusion. Near-infrared spectroscopy is a new technique that permits noninvasive assessment of skeletal muscle oxygenation by monitoring changes in nearinfrared light absorption. With use of near-infrared spectroscopy, serratus anterior muscle oxygenation during maximal bicycle exercise was compared in 10 patients with heart failure (ejection fraction 16 ± 5%) and 7 age-matched normal subjects. Oxygen consumption (VO2), minute ventilation (VE) and arterial saturation were also measured. Changes in difference in absorption between 760 and 800 nm, expressed in arbitrary units, were used to detect muscle deoxygenation.Minimal change in this difference in absorption occurred in normal subjects during exercise, whereas patients with heart failure exhibited progressive changes throughout exercise consistent with respiratory muscle deoxygenation (peak exercise: normal 3 ± 6, heart failure 12 ± 4 near-infrared arbitrary units, p < 0.001). At comparable work loads patiente with heart failure had significantly greater minute ventilation and respiratory rate but similar tidal volume when contrasted with normal subjects. However, at peak exercise normal subjects achieved significantly greater minute ventilation and tidal volume with a comparable respiratory rate. No significant arterial desaturation occurred during exercise in either group.These findings indicate that respiratory muscle deoxygenation occurs in patients with heart failure during exercise. This deoxygenation may contribute to the exertional dyspnea experienced by such patients
    corecore