6,327 research outputs found
How would GW150914 look with future GW detector networks?
The first detected gravitational wave signal, GW150914, was produced by the
coalescence of a stellar-mass binary black hole. Along with the subsequent
detection of GW151226, GW170104 and the candidate event LVT151012, this gives
us evidence for a population of black hole binaries with component masses in
the tens of solar masses. As detector sensitivity improves, this type of source
is expected to make a large contribution to the overall number of detections,
but has received little attention compared to binary neutron star systems in
studies of projected network performance. We simulate the observation of a
system like GW150914 with different proposed network configurations, and study
the precision of parameter estimates, particularly source location, orientation
and masses. We find that the improvements to low frequency sensitivity that are
expected with continued commissioning will improve the precision of chirp mass
estimates by an order of magnitude, whereas the improvements in sky location
and orientation are driven by the expanded network configuration. This
demonstrates that both sensitivity and number of detectors will be important
factors in the scientific potential of second generation detector networks.Comment: 18 pages, 5 figures, 2 table
Biofuels, Climate Policy and the European Vehicle Fleet
Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, which is a general equilibrium model of the world economy. We expand this model by explicitly introducing current generation biofuels, by accounting for stock turnover of the vehicle fleets and by disaggregating gasoline and diesel cars. We find that biofuels mandates alone do not substantially change the share of diesel cars in the total fleet given the current structure of fuel taxes and tariffs in Europe that favors diesel vehicles. Jointly implemented changes in fiscal policy, however, can reverse the trend toward more diesel vehicles. We find that harmonizing fuel taxes reduces the welfare cost associated with renewable fuel policy and lowers the share of diesel vehicles in the total fleet to 21% by 2030 compared to 25% in 2010. We also find that eliminating tariffs on biofuel imports, which under the existing regime favor biodiesel and impede sugar ethanol imports, is welfare-enhancing and brings about further substantial reductions in CO2 emissions.This study received support from the MIT Joint Program on the Science and Policy of Global Change, which is funded by a consortium of government, industry and foundation sponsors
Distributional Impacts of a U.S. Greenhouse Gas Policy: A General Equilibrium Analysis of Carbon Pricing
Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).We develop a new model of the U.S., the U.S. Regional Energy Policy (USREP) model that is resolved for large states and regions of the U.S. and by income class and apply the model to investigate a $15 per ton CO2 equivalent price on greenhouse gas emissions. Previous estimates of distributional impacts of carbon pricing have been done outside of the model simulation and have been based on energy expenditure patterns of households in different regions and of different income levels. By estimating distributional effects within the economic model, we include the effects of changes in capital returns and wages on distribution and find that the effects are significant and work against the expenditure effects. We find the following:
First, while results based only on energy expenditure have shown carbon pricing to be regressive we find the full distributional effect to be neutral or slightly progressive. This demonstrates the importance of tracing through all economic impacts and not just focusing on spending side impacts.
Second, the ultimate impact of such a policy on households depends on how allowances, or the revenue raised from auctioning them, is used. Free distribution to firms would be highly regressive, benefiting higher income households and forcing lower income households to bear the full cost of the policy and what amounts to a transfer of wealth to higher income households. Lump sum distribution through equal-sized household rebates would make lower income households absolutely better off while shifting the costs to higher income households. Schemes that would cut taxes are generally slightly regressive but improve somewhat the overall efficiency of the program.
Third, proposed legislation would distribute allowances to local distribution companies (electricity and natural gas distributors) and public utility commissions would then determine how the value of those allowances was used. A significant risk in such a plan is that distribution to households might be perceived as lowering utility rates That reduced the efficiency of the policy we examined by 40 percent.
Finally, the states on the coasts bear little cost or can benefit because of the distribution of allowance revenue while mid-America and southern states bear the highest costs. This regional pattern reflects energy consumption and energy production difference among states. Use of allowance revenue to cut taxes generally exacerbates these regional differences because coastal states are also generally higher income states, and those with higher incomes benefit more from tax cuts.MIT Joint Program on the Science
and Policy of Global Change through a combination of government, industry, and foundation
funding, the MIT Energy Initiative, and additional support for this work from a coalition of
industrial sponsors
Genetic analysis of safflower domestication.
BackgroundSafflower (Carthamus tinctorius L.) is an oilseed crop in the Compositae (a.k.a. Asteraceae) that is valued for its oils rich in unsaturated fatty acids. Here, we present an analysis of the genetic architecture of safflower domestication and compare our findings to those from sunflower (Helianthus annuus L.), an independently domesticated oilseed crop within the same family.We mapped quantitative trait loci (QTL) underlying 24 domestication-related traits in progeny from a cross between safflower and its wild progenitor, Carthamus palaestinus Eig. Also, we compared QTL positions in safflower against those that have been previously identified in cultivated x wild sunflower crosses to identify instances of colocalization.ResultsWe mapped 61 QTL, the vast majority of which (59) exhibited minor or moderate phenotypic effects. The two large-effect QTL corresponded to one each for flower color and leaf spininess. A total of 14 safflower QTL colocalized with previously reported sunflower QTL for the same traits. Of these, QTL for three traits (days to flower, achene length, and number of selfed seed) had cultivar alleles that conferred effects in the same direction in both species.ConclusionsAs has been observed in sunflower, and unlike many other crops, our results suggest that the genetics of safflower domestication is quite complex. Moreover, our comparative mapping results indicate that safflower and sunflower exhibit numerous instances of QTL colocalization, suggesting that parallel trait transitions during domestication may have been driven, at least in part, by parallel genotypic evolution at some of the same underlying genes
Distributional Implications of Alternative U.S. Greenhouse Gas Control Measures
We analyze the distributional and efficiency impacts of different allowance allocation schemes for a national cap and trade system using the USREP model, a new recursive dynamic computable general equilibrium model of the U.S. economy. The USREP model tracks nine different income groups and twelve different geographic regions with the United States. Recently proposed legislation include the Waxman-Markey House bill, the similar Kerry-Boxer bill in the Senate that has been replaced by a Kerry-Lieberman draft bill, and the Cantwell-Collins Senate bill that takes a different approach to revenue allocation. We consider allocation schemes motivated by the recent proposals applied to a comprehensive national cap and trade system that limits cumulative greenhouse gas emissions over the control period to 203 billion metric tons. The policy target approximates national goals identified in pending legislation. We find that the allocation schemes in all proposals are progressive over the lower half of the income distribution and proportional in the upper half of the income distribution. Scenarios based on the Cantwell-Collins allocation proposal are less progressive in early years and have lower welfare costs due to smaller redistribution to low income households and consequently lower income-induced increases in energy demand and less savings and investment. Scenarios based on the other three allocation schemes tend to overcompensate some adversely affected income groups and regions in early years but this dissipates over time as the allowance allocation effect becomes weaker. Finally we find that carbon pricing by itself (ignoring the return of carbon revenues through allowance allocations) is proportional to modestly progressive. This striking result follows from the dominance of the sources over uses side impacts of the policy and stands in sharp contrast to previous work that has focused only on the uses side. The main reason is that lower is that lower income households derive a large fraction of income from government transfers and, reflecting the reality that these are generally indexed to inflation, we hold the transfers constant in real terms. As a result this source of income is unaffected by carbon pricing, while wage and capital income is affected.
Altitudinal Movements and Summer Habitat Preferences of Woodland Caribou in the Kluane Ranges, Yukon Territory
The altitudinal movements, preferred topography and plant communities of 150 to 200 woodland caribou (Rangifer tarandus caribou) were recorded for two summers. Nine subalpine or alpine tundra communities constituting their major summer range were quantitatively described. Caribou calved in shrub communities between 1300 and 1450 m, moving upward as the summer progressed. Stags and associated juveniles preferred higher elevations than did other groupings. Caribou disproportionately chose north-facing slopes of less than 20 deg. They fed in birch-sedge meadow and sedge meadow communities nearly twice as much as expected from the areal extent of the communities, and also disproportionately chose other communities with high sedge components. The presence of sedges was the predominant vegetational characteristic chosen regardless of elevations, with only minor differences between caribou sex and age groupings
Direct Detection of Singlet-Triplet Interconversion in OLED Magnetoelectroluminescence with a Metal-Free Fluorescence-Phosphorescence Dual Emitter
We demonstrate that a simple phenazine derivative can serve as a dual emitter for organic light-emitting diodes, showing simultaneous luminescence from the singlet and triplet excited states at room temperature without the need of heavy-atom substituents. Although devices made with this emitter achieve only low quantum efficiencies of < 0.2%, changes in fluorescence and phosphorescence intensity on the subpercent scale caused by an external magnetic field of up to 30 mT are clearly resolved with an ultra-low-noise optical imaging technique. The results demonstrate the concept of using simple reporter molecules, available commercially, to optically detect the spin of excited states formed in an organic light-emitting diode and thereby probe the underlying spin statistics of recombining electron-hole pairs. A clear anticorrelation of the magnetic-field dependence of singlet and triplet emission shows that it is the spin interconversion between singlet and triplet which dominates the magnetoluminescence response: the phosphorescence intensity decreases by the same amount as the fluorescence intensity increases. The concurrent detection of singlet and triplet emission as well as device resistance at cryogenic and room temperature constitute a useful tool to disentangle the effects of spin-dependent recombination from spin-dependent transport mechanisms
Distributional Impacts of Carbon Pricing: A General Equilibrium Approach with Micro-Data for Households
Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).Many policies to limit greenhouse gas emissions have at their core efforts to put a price on carbon emissions. Carbon pricing impacts households both by raising the cost of carbon intensive products and by changing factor prices. A complete analysis requires taking both effects into account. The impact of carbon pricing is determined by heterogeneity in household spending patterns across income groups as well as heterogeneity in factor income patterns across income groups. It is also affected by precise formulation of the policy (how is the revenue from carbon pricing distributed) as well as the treatment of other government policies (e.g. the treatment of transfer payments). What is often neglected in analyses of policy is the heterogeneity of impacts across households even within income or regional groups. In this paper, we incorporate 15,588 households from the U.S. Consumer and Expenditure Survey data as individual agents in a comparative-static general equilibrium framework. These households are represented within the MIT USREP model, a detailed general equilibrium model of the U.S. economy. In particular, we categorize households by full household income (factor income as well as transfer income) and apply various measures of lifetime income to distinguish households that are temporarily low-income (e.g., retired households drawing down their financial assets) from permanently low-income households. We also provide detailed within-group distributional measures of burden impacts from various policy scenarios.This study received support from the MIT Joint Program on the Science and Policy of Global Change, which is funded by a consortium of government, industry and foundation sponsors
Digging the population of compact binary mergers out of the noise
Coalescing compact binaries emitting gravitational wave (GW) signals, as recently detected by
the Advanced LIGO-Virgo network, constitute a population over the multi-dimensional space
of component masses and spins, redshift, and other parameters. Characterizing this population
is a major goal of GWobservations and may be approached via parametric models.We demonstrate
hierarchical inference for such models with a method that accounts for uncertainties in
each binary merger’s individual parameters, for mass-dependent selection effects, and also
for the presence of a second population of candidate events caused by detector noise. Thus,
the method is robust to potential biases from a contaminated sample and allows us to extract
information from events that have a relatively small probability of astrophysical origin
- …