The first detected gravitational wave signal, GW150914, was produced by the
coalescence of a stellar-mass binary black hole. Along with the subsequent
detection of GW151226, GW170104 and the candidate event LVT151012, this gives
us evidence for a population of black hole binaries with component masses in
the tens of solar masses. As detector sensitivity improves, this type of source
is expected to make a large contribution to the overall number of detections,
but has received little attention compared to binary neutron star systems in
studies of projected network performance. We simulate the observation of a
system like GW150914 with different proposed network configurations, and study
the precision of parameter estimates, particularly source location, orientation
and masses. We find that the improvements to low frequency sensitivity that are
expected with continued commissioning will improve the precision of chirp mass
estimates by an order of magnitude, whereas the improvements in sky location
and orientation are driven by the expanded network configuration. This
demonstrates that both sensitivity and number of detectors will be important
factors in the scientific potential of second generation detector networks.Comment: 18 pages, 5 figures, 2 table