541 research outputs found

    Risk sharing in brownfields redevelopment : a case study approach

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Urban Studies and Planning, 1997.Includes bibliographical references (leaves 82-84).by John M. Evans.M.S

    Artificial reaction networks.

    Get PDF
    In this paper we present a novel method of simulating cellular intelligence, the Artificial Reaction Network (ARN). The ARN can be described as a modular S-System, with some properties in common with other Systems Biology and AI techniques, including Random Boolean Networks, Petri Nets, Artificial Biochemical Networks and Artificial Neural Networks. We validate the ARN against standard biological data, and successfully apply it to simulate cellular intelligence associated with the well-characterized cell signaling network of Escherichia coli chemotaxis. Finally, we explore the adaptability of the ARN, as a means to develop novel AI techniques, by successfully applying the simulated E. coli chemotaxis to a general optimization problem

    Combining biochemical network motifs within an ARN-agent control system.

    Get PDF
    The Artificial Reaction Network (ARN) is an Artificial Chemistry representation inspired by cell signaling networks. The ARN has previously been applied to the simulation of the chemotaxis pathway of Escherichia coli and to the control of limbed robots. In this paper we discuss the design of an ARN control system composed of a combination of network motifs found in actual biochemical networks. Using this control system we create multiple cell-like autonomous agents capable of coordinating all aspects of their behavior, recognizing environmental patterns and communicating with other agent's stigmergically. The agents are applied to simulate two phases of the life cycle of Dictyostelium discoideum: vegetative and aggregation phase including the transition. The results of the simulation show that the ARN is well suited for construction of biochemical regulatory networks. Furthermore, it is a powerful tool for modeling multi agent systems such as a population of amoebae or bacterial colony

    Artificial chemistry approach to exploring search spaces using artificial reaction network agents.

    Get PDF
    The Artificial Reaction Network (ARN) is a cell signaling network inspired representation belonging to the branch of A-Life known as Artificial Chemistry. It has properties in common with both AI and Systems Biology techniques including Artificial Neural Networks, Petri Nets, Random Boolean Networks and S-Systems. The ARN has been previously applied to control of limbed robots and simulation of biological signaling pathways. In this paper, multiple instances of independent distributed ARN controlled agents function to find the global minima within a set of simulated environments characterized by benchmark problems. The search behavior results from the internal ARN network, but is enhanced by collective activities and stigmergic interaction of the agents. The results show that the agents are able to find best fitness solutions in all problems, and compare well with results of cell inspired optimization algorithms. Such a system may have practical application in distributed or swarm robotics

    Exploring aspects of cell intelligence with artificial reaction networks.

    Get PDF
    The Artificial Reaction Network (ARN) is a Cell Signalling Network inspired connectionist representation belonging to the branch of A-Life known as Artificial Chemistry. Its purpose is to represent chemical circuitry and to explore computational properties responsible for generating emergent high-level behaviour associated with cells. In this paper, the computational mechanisms involved in pattern recognition and spatio-temporal pattern generation are examined in robotic control tasks. The results show that the ARN has application in limbed robotic control and computational functionality in common with Artificial Neural Networks. Like spiking neural models, the ARN can combine pattern recognition and complex temporal control functionality in a single network, however it offers increased flexibility. Furthermore, the results illustrate parallels between emergent neural and cell intelligence

    Braggoriton--Excitation in Photonic Crystal Infiltrated with Polarizable Medium

    Full text link
    Light propagation in a photonic crystal infiltrated with polarizable molecules is considered. We demonstrate that the interplay between the spatial dispersion caused by Bragg diffraction and polaritonic frequency dispersion gives rise to novel propagating excitations, or braggoritons, with intragap frequencies. We derive the braggoriton dispersion relation and show that it is governed by two parameters, namely, the strength of light-matter interaction and detuning between the Bragg frequency and that of the infiltrated molecules. We also study defect-induced states when the photonic band gap is divided into two subgaps by the braggoritonic branches and find that each defect creates two intragap localized states inside each subgap.Comment: LaTeX, 8 pages, 5 figure

    Construction of the GAMCIT gamma-ray burst detector (G-056)

    Get PDF
    The GAMCIT (Gamma-ray Astrophysics Mission, California Institute of Technology) payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the development and construction of the GAMCIT payload. In addition, this paper will reflect upon the unique challenges involved in bringing the payload close to completion, as the project has been designed, constructed, and managed entirely by undergraduate members of the Caltech SEDS (Students for the Exploration and Development of Space). Our experience will definitely be valuable to other student groups interested in undertaking a challenge such as a Get-Away-Special payload

    Applications and design of cooperative multi-agent ARN-based systems.

    Get PDF
    The Artificial Reaction Network (ARN) is an Artificial Chemistry inspired by Cell Signalling Networks (CSNs). Its purpose is to represent chemical circuitry and to explore the computational properties responsible for generating emergent high-level behaviour. In previous work, the ARN was applied to the simulation of the chemotaxis pathway of E. coli and to the control of quadrupedal robotic gaits. In this paper, the design and application of ARN-based cell-like agents termed Cytobots are explored. Such agents provide a facility to explore the dynamics and emergent properties of multicellular systems. The Cytobot ARN is constructed by combining functional motifs found in real biochemical networks. By instantiating this ARN, multiple Cytobots are created, each of which is capable of recognizing environmental patterns, stigmergic communication with others and controlling its own trajectory. Applications in biological simulation and robotics are investigated by first applying the agents to model the life-cycle phases of the cellular slime mould D. discoideum and then to simulate an oil-spill clean-up operation. The results demonstrate that an ARN based approach provides a powerful tool for modelling multi-agent biological systems and also has application in swarm robotics

    The GAMCIT gamma ray burst detector

    Get PDF
    The GAMCIT payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the design of the GAMCIT payload, in the areas of battery selection, power processing, electronics design, gamma-ray detection systems, and the optical imaging of the transients. The paper discusses the progress of the construction, testing, and specific design details of the payload. In addition, this paper discusses the unique challenges involved in bringing this payload to completion, as the project has been designed, constructed, and managed entirely by undergraduate students. Our experience will certainly be valuable to other student groups interested in taking on a challenging project such as a Get-Away-Special payload
    corecore