In this paper we present a novel method of simulating cellular intelligence, the Artificial Reaction Network (ARN). The ARN can be described as a modular S-System, with some properties in common with other Systems Biology and AI techniques, including Random Boolean Networks, Petri Nets, Artificial Biochemical Networks and Artificial Neural Networks. We validate the ARN against standard biological data, and successfully apply it to simulate cellular intelligence associated with the well-characterized cell signaling network of Escherichia coli chemotaxis. Finally, we explore the adaptability of the ARN, as a means to develop novel AI techniques, by successfully applying the simulated E. coli chemotaxis to a general optimization problem