4,560 research outputs found

    Simple Proof of Security of the BB84 Quantum Key Distribution Protocol

    Get PDF
    We prove the security of the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement-purification based protocol uses Calderbank-Shor-Steane (CSS) codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol.Comment: 5 pages, Latex, minor changes to improve clarity and fix typo

    Evidence for Bound Entangled States with Negative Partial Transpose

    Get PDF
    We exhibit a two-parameter family of bipartite mixed states ρbc\rho_{bc}, in a ddd\otimes d Hilbert space, which are negative under partial transposition (NPT), but for which we conjecture that no maximally entangled pure states in 222\otimes 2 can be distilled by local quantum operations and classical communication (LQ+CC). Evidence for this undistillability is provided by the result that, for certain states in this family, we cannot extract entanglement from any arbitrarily large number of copies of ρbc\rho_{bc} using a projection on 222\otimes 2. These states are canonical NPT states in the sense that any bipartite mixed state in any dimension with NPT can be reduced by LQ+CC operations to an NPT state of the ρbc\rho_{bc} form. We show that the main question about the distillability of mixed states can be formulated as an open mathematical question about the properties of composed positive linear maps.Comment: Revtex, 19 pages, 2 eps figures. v2,3: very minor changes, submitted to Phys. Rev. A. v4: minor typos correcte

    Conditional beam splitting attack on quantum key distribution

    Get PDF
    We present a novel attack on quantum key distribution based on the idea of adaptive absorption [calsam01]. The conditional beam splitting attack is shown to be much more efficient than the conventional beam spitting attack, achieving a performance similar to the, powerful but currently unfeasible, photon number splitting attack. The implementation of the conditional beam splitting attack, based solely on linear optical elements, is well within reach of current technology.Comment: Submitted to Phys. Rev.

    Secure quantum key distribution using squeezed states

    Get PDF
    We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor e^r=1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel.Comment: 19 pages, 3 figures, RevTeX and epsf, new section on channel losse

    Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity.

    Get PDF
    The majority of chimeric antigen receptor (CAR) T-cell research has focused on attacking cancer cells. Here, we show that targeting the tumor-promoting, nontransformed stromal cells using CAR T cells may offer several advantages. We developed a retroviral CAR construct specific for the mouse fibroblast activation protein (FAP), comprising a single-chain Fv FAP [monoclonal antibody (mAb) 73.3] with the CD8α hinge and transmembrane regions, and the human CD3ζ and 4-1BB activation domains. The transduced muFAP-CAR mouse T cells secreted IFN-γ and killed FAP-expressing 3T3 target cells specifically. Adoptively transferred 73.3-FAP-CAR mouse T cells selectively reduced FAP(hi) stromal cells and inhibited the growth of multiple types of subcutaneously transplanted tumors in wild-type, but not FAP-null immune-competent syngeneic mice. The antitumor effects could be augmented by multiple injections of the CAR T cells, by using CAR T cells with a deficiency in diacylglycerol kinase, or by combination with a vaccine. A major mechanism of action of the muFAP-CAR T cells was the augmentation of the endogenous CD8(+) T-cell antitumor responses. Off-tumor toxicity in our models was minimal following muFAP-CAR T-cell therapy. In summary, inhibiting tumor growth by targeting tumor stroma with adoptively transferred CAR T cells directed to FAP can be safe and effective, suggesting that further clinical development of anti-human FAP-CAR is warranted

    Influence of chromophores on quarternary structure of phycobiliproteins from the cyanobacterium, Mastigocladus laminosus

    Get PDF
    Chromophores of C-phycocyanin and phycoerythrο-cyanin have been chemically modified by reduction to rubins , bleaching , photoisomerization , or perturbation with bulky substituents. Pigments containing modified chromophores, or hybrids containing modified and unmodified chromophores in individual protomers have been prepared. All modifications inhibit the association of the (aß)-protomers of these pigments to higher aggregates. The results demonstrate a pronounced effect of the state of the chromophores on biliprotein quaternary structure. It may be important in phycobi1isome assembly , and also in the dual function of biliproteins as (i) antenna pigments for photosynthesis and (ii) reaction centers for photomor-phogenesis

    Analysis of detector performance in a gigahertz clock rate quantum key distribution system

    Get PDF
    We present a detailed analysis of a gigahertz clock rate environmentally robust phase-encoded quantum key distribution (QKD) system utilizing several different single-photon detectors, including the first implementation of an experimental resonant cavity thin-junction silicon single-photon avalanche diode. The system operates at a wavelength of 850 nm using standard telecommunications optical fibre. A general-purpose theoretical model for the performance of QKD systems is presented with reference to these experimental results before predictions are made about realistic detector developments in this system. We discuss, with reference to the theoretical model, how detector operating parameters can be further optimized to maximize key exchange rates

    Radio Astronomy

    Get PDF
    Contains reports on isx research projects.National Aeronautics and Space Administration, Langley Research Center (Contract NAS1-10693)National Science Foundation (Grant GP-21348)National Science Foundation (Grant GP-14589)California Institute of Technology Contract 952568Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-030
    corecore