34 research outputs found

    Novel Superconducting Tunneling Structures

    Get PDF
    Contains description of one research project.Joint Services Electronics Program Contract DAAL03-89-C-000

    Novel Superconducting Tunneling Structures

    Get PDF
    Contains a description of one research project.Joint Services Electronics Program Contract DAAL03-89-C-000

    The Consequences of Low-Dimensionality in Oxide Superconductors

    Get PDF
    Contains report on one research project.Joint Service Electronics Program (Contract DAAL03-89-C-0001

    Effect of thermal phase fluctuations on the superfluid density of two-dimensional superconducting films

    Full text link
    High precision measurements of the complex sheet conductivity of superconducting Mo77Ge23 thin films have been made from 0.4 K through Tc. A sharp drop in the inverse sheet inductance, 1/L(T), is observed at a temperature, Tc, which lies below the mean-field transition temperature, Tco. Just below Tc, the suppression of 1/L(T) below its mean-field value indicates that longitudinal phase fluctuations have nearly their full classical amplitude, but they disappear rapidly as T decreases. We argue that there is a quantum crossover at about 0.94 Tco, below which classical phase fluctuations are suppressed.Comment: 14 pages, 3 figures. Subm. to PR

    Dynamic Impedance of Two-Dimensional Superconducting Films Near the Superconducting Transition

    Full text link
    The sheet impedances, Z(w,T), of several superconducting a-Mo77Ge23 films and one In/InOx film have been measured in zero field using a two-coil mutual inductance technique at frequencies from 100 Hz to 100 kHz. Z(w,T) is found to have three contributions: the inductive superfluid, renormalized by nonvortex phase fluctuations; conventional vortex-antivortex pairs, whose contribution turns on very rapidly just below the usual Kosterlitz-Thouless-Berezinskii unbinding temperature; and an anomalous contribution. The latter is predominantly resistive, persists well below the KTB temperature, and is weakly dependent on frequency down to remarkably low frequencies, at least 100 Hz. It increases with T as e-U'(T)/kT, where the activation energy, U'(T), is about half the energy to create a vortex-antivortex pair, indicating that the frequency dependence is that of individual excitations, rather than critical behavior.Comment: 10 pages, 10 figs; subm PR

    The SSN ontology of the W3C semantic sensor network incubator group

    Get PDF
    The W3C Semantic Sensor Network Incubator group (the SSN-XG) produced an OWL 2 ontology to describe sensors and observations ? the SSN ontology, available at http://purl.oclc.org/NET/ssnx/ssn. The SSN ontology can describe sensors in terms of capabilities, measurement processes, observations and deployments. This article describes the SSN ontology. It further gives an example and describes the use of the ontology in recent research projects

    A Simple Standard for Sharing Ontological Mappings (SSSOM).

    Get PDF
    Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction). Furthermore, the lack of descriptions of how mappings were done makes it hard to combine and reconcile mappings, particularly curated and automated ones. We have developed the Simple Standard for Sharing Ontological Mappings (SSSOM) which addresses these problems by: (i) Introducing a machine-readable and extensible vocabulary to describe metadata that makes imprecision, inaccuracy and incompleteness in mappings explicit. (ii) Defining an easy-to-use simple table-based format that can be integrated into existing data science pipelines without the need to parse or query ontologies, and that integrates seamlessly with Linked Data principles. (iii) Implementing open and community-driven collaborative workflows that are designed to evolve the standard continuously to address changing requirements and mapping practices. (iv) Providing reference tools and software libraries for working with the standard. In this paper, we present the SSSOM standard, describe several use cases in detail and survey some of the existing work on standardizing the exchange of mappings, with the goal of making mappings Findable, Accessible, Interoperable and Reusable (FAIR). The SSSOM specification can be found at http://w3id.org/sssom/spec. Database URL: http://w3id.org/sssom/spec

    Submicron and Nanometer Structures Technology and Research

    Get PDF
    Contains reports on twenty research projects and a list of publications.Defense Advanced Research Projects Agency Contract N00019-92-K-0021Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant ECS 90-16437U.S. Army Research Office Grant DAAL03-92-G-0291IBM CorporationU.S. Air Force - Office of Scientific Research Grant F49620-92-J-0064National Science Foundation Grant DMR 87-19217National Science Foundation Grant DMR 90-22933Defense Advanced Research Projects Agency Consortium for Superconducting ElectronicsNational Aeronautics and Space Administration Contract NAS8-36748National Aeronautics and Space Administration Grant NAGW-200

    First Large-Scale DNA Barcoding Assessment of Reptiles in the Biodiversity Hotspot of Madagascar, Based on Newly Designed COI Primers

    Get PDF
    BACKGROUND: DNA barcoding of non-avian reptiles based on the cytochrome oxidase subunit I (COI) gene is still in a very early stage, mainly due to technical problems. Using a newly developed set of reptile-specific primers for COI we present the first comprehensive study targeting the entire reptile fauna of the fourth-largest island in the world, the biodiversity hotspot of Madagascar. METHODOLOGY/PRINCIPAL FINDINGS: Representatives of the majority of Madagascan non-avian reptile species (including Squamata and Testudines) were sampled and successfully DNA barcoded. The new primer pair achieved a constantly high success rate (72.7-100%) for most squamates. More than 250 species of reptiles (out of the 393 described ones; representing around 64% of the known diversity of species) were barcoded. The average interspecific genetic distance within families ranged from a low of 13.4% in the Boidae to a high of 29.8% in the Gekkonidae. Using the average genetic divergence between sister species as a threshold, 41-48 new candidate (undescribed) species were identified. Simulations were used to evaluate the performance of DNA barcoding as a function of completeness of taxon sampling and fragment length. Compared with available multi-gene phylogenies, DNA barcoding correctly assigned most samples to species, genus and family with high confidence and the analysis of fewer taxa resulted in an increased number of well supported lineages. Shorter marker-lengths generally decreased the number of well supported nodes, but even mini-barcodes of 100 bp correctly assigned many samples to genus and family. CONCLUSIONS/SIGNIFICANCE: The new protocols might help to promote DNA barcoding of reptiles and the established library of reference DNA barcodes will facilitate the molecular identification of Madagascan reptiles. Our results might be useful to easily recognize undescribed diversity (i.e. novel taxa), to resolve taxonomic problems, and to monitor the international pet trade without specialized expert knowledge

    Submicron and Nanometer Structures Technology and Research

    Get PDF
    Contains reports on sixteen research projects and a list of publications.Joint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant ECS 90-16437Semiconductor Research Corporation Contract 90-SP-080U.S. Navy - Naval Research Laboratory Contract N00014-90-K-2018IBM CorporationU.S. Air Force - Office of Scientific Research Grant F49620-92-J-0064National Science Foundation Grant DMR 87-19217National Science Foundation Grant DMR 90-22933National Aeronautics and Space Administration Contract NAS8-36748National Aeronautics and Space Administration Grant NAGW-2003National Science Foundation Grant DMR 90-01698Spire Corporatio
    corecore