5,133 research outputs found

    Partial regularity and smooth topology-preserving approximations of rough domains

    Get PDF
    For a bounded domain Ω⊂Rm,m≥2,\Omega\subset\mathbb{R}^m, m\geq 2, of class C0C^0, the properties are studied of fields of `good directions', that is the directions with respect to which ∂Ω\partial\Omega can be locally represented as the graph of a continuous function. For any such domain there is a canonical smooth field of good directions defined in a suitable neighbourhood of ∂Ω\partial\Omega, in terms of which a corresponding flow can be defined. Using this flow it is shown that Ω\Omega can be approximated from the inside and the outside by diffeomorphic domains of class C∞C^\infty. Whether or not the image of a general continuous field of good directions (pseudonormals) defined on ∂Ω\partial\Omega is the whole of Sm−1\mathbb{S}^{m-1} is shown to depend on the topology of Ω\Omega. These considerations are used to prove that if m=2,3m=2,3, or if Ω\Omega has nonzero Euler characteristic, there is a point P∈∂ΩP\in\partial\Omega in the neighbourhood of which ∂Ω\partial\Omega is Lipschitz. The results provide new information even for more regular domains, with Lipschitz or smooth boundaries.Comment: Final version appeared in Calc. Var PDE 56, Issue 1, 201

    Quasistatic nonlinear viscoelasticity and gradient flows

    Full text link
    We consider the equation of motion for one-dimensional nonlinear viscoelasticity of strain-rate type under the assumption that the stored-energy function is λ\lambda-convex, which allows for solid phase transformations. We formulate this problem as a gradient flow, leading to existence and uniqueness of solutions. By approximating general initial data by those in which the deformation gradient takes only finitely many values, we show that under suitable hypotheses on the stored-energy function the deformation gradient is instantaneously bounded and bounded away from zero. Finally, we discuss the open problem of showing that every solution converges to an equilibrium state as time t→∞t \to \infty and prove convergence to equilibrium under a nondegeneracy condition. We show that this condition is satisfied in particular for any real analytic cubic-like stress-strain function.Comment: 40 pages, 1 figur

    Geometry of polycrystals and microstructure

    Full text link
    We investigate the geometry of polycrystals, showing that for polycrystals formed of convex grains the interior grains are polyhedral, while for polycrystals with general grain geometry the set of triple points is small. Then we investigate possible martensitic morphologies resulting from intergrain contact. For cubic-to-tetragonal transformations we show that homogeneous zero-energy microstructures matching a pure dilatation on a grain boundary necessarily involve more than four deformation gradients. We discuss the relevance of this result for observations of microstructures involving second and third-order laminates in various materials. Finally we consider the more specialized situation of bicrystals formed from materials having two martensitic energy wells (such as for orthorhombic to monoclinic transformations), but without any restrictions on the possible microstructure, showing how a generalization of the Hadamard jump condition can be applied at the intergrain boundary to show that a pure phase in either grain is impossible at minimum energy.Comment: ESOMAT 2015 Proceedings, to appea

    Nucleation of austenite in mechanically stabilized martensite by localized heating

    Get PDF
    The nucleation of bcc austenite in a single crystal of a mechanically stabilized 2H-martensite of Cu-Al-Ni shape-memory alloy is studied. The nucleation process is induced by localized heating and observed by optical microscopy. It is observed that nucleation occurs after a time delay and that the nucleation points are always located at one of the corners of the sample (a rectangular bar in the austenite), regardless of where the localized heating is applied. Using a simplified nonlinear elasticity model, we propose an explanation for the location of the nucleation points, by showing that the martensite is a local minimizer of the energy with respect to localized variations in the interior, on faces and edges of the sample, but not at some corners, where a localized microstructure can lower the energy.Comment: Proceedings, ICOMAT 2011, Journal of Alloys and Compounds, in pres

    Slip and twinning in Bravais lattices

    Full text link
    A unified treatment of slip and twinning in Bravais lattices is given, focussing on the case of cubic symmetry, and using the Ericksen energy well formulation, so that interfaces correspond to rank-one connections between the infinitely many crystallographically equivalent energy wells. Twins are defined to be such rank-one connections involving a nontrivial reflection of the lattice across some plane. The slips and twins minimizing shear magnitude for cubic lattices are rigorously calculated, and the conjugates of these and other slips analyzed. It is observed that all rank-one connections between the energy wells for the dual of a Bravais lattice can be obtained explicitly from those for the original lattice, so that in particular the rank-one connections for fcc can be obtained explicitly from those for bcc.Comment: Various corrections and clarifications made. The result that the rank-one connections for fcc can be obtained from those for bcc (and vice versa) now generalized to apply to any pair of dual lattices. To appear in Journal of Elasticit

    Remarks on the linear wave equation

    Full text link
    We make some remarks on the linear wave equation concerning the existence and uniqueness of weak solutions, satisfaction of the energy equation, growth properties of solutions, the passage from bounded to unbounded domains, and reconciliation of different representations of solutions

    A free discontinuity model for smectic thin films

    Get PDF
    We attempt to describe surface defects in smectic A thin films by formulating a free discontinuity problem - that is, a variational problem in which the order parameter is allowed to have jump discontinuities on some (unknown) set. The free energy functional contains an interfacial energy which penalizes dislocations of the smectic layers at the jump. We discuss mathematical issues related to the existence of minimizers and provide examples of minimizers in some simplified settings

    Characterizing the Initial Phase of Epidemic Growth on some Empirical Networks

    Full text link
    A key parameter in models for the spread of infectious diseases is the basic reproduction number R0R_0, which is the expected number of secondary cases a typical infected primary case infects during its infectious period in a large mostly susceptible population. In order for this quantity to be meaningful, the initial expected growth of the number of infectious individuals in the large-population limit should be exponential. We investigate to what extent this assumption is valid by performing repeated simulations of epidemics on selected empirical networks, viewing each epidemic as a random process in discrete time. The initial phase of each epidemic is analyzed by fitting the number of infected people at each time step to a generalised growth model, allowing for estimating the shape of the growth. For reference, similar investigations are done on some elementary graphs such as integer lattices in different dimensions and configuration model graphs, for which the early epidemic behaviour is known. We find that for the empirical networks tested in this paper, exponential growth characterizes the early stages of the epidemic, except when the network is restricted by a strong low-dimensional spacial constraint, such as is the case for the two-dimensional square lattice. However, on finite integer lattices of sufficiently high dimension, the early development of epidemics shows exponential growth.Comment: To be included in the conference proceedings for SPAS 2017 (International Conference on Stochastic Processes and Algebraic Structures), October 4-6, 201

    Belief Maintenance Systems: Initial Prototype Specification

    Get PDF
    A fundamental need in future information systems is an effective method of accurately representing and monitoring dynamic, real-world situations inside a computer. Information is represented using an Extended Open World Assumption (EOWA), in which the data are explicitly true or false. Reasoning within the EOWA is done through the use of a dynamic dependency net which only represents those beliefs and justifications that are both currently valid and in current use. In this paper, we present definitions and uses of the EOWA and dynamic dependency net in our current research of developing a database with which we can use deductive reasoning with limited resources. A prototype has been implemented for determining the existing problems of creating such a belief management system for operation in real-world applications
    • …
    corecore