485 research outputs found

    Maximally Natural Supersymmetry

    Full text link
    We consider 4D weak scale theories arising from 5D supersymmetric (SUSY) theories with maximal Scherk-Schwarz breaking at a Kaluza-Klein (KK) scale of several TeV. Many of the problems of conventional SUSY are avoided. Apart from 3rd family sfermions the SUSY spectrum is heavy, with only ~50% tuning at a gluino mass of ~2TeV and a stop mass of ~650 GeV. A single Higgs doublet acquires a vacuum expectation value, so the physical Higgs is automatically Standard-Model-like. A new U(1)' interaction raises the Higgs mass to 126 GeV. For minimal tuning the associated Z', as well as the 3rd family sfermions, must be accessible to LHC13. A gravitational wave signal consistent with BICEP2 is possible if inflation occurs when the extra dimensions are small.Comment: 5 pages, 4 figure

    Natural Scherk-Schwarz Theories of the Weak Scale

    Get PDF
    Natural supersymmetric theories of the weak scale are under growing pressure given present LHC constraints, raising the question of whether untuned supersymmetric (SUSY) solutions to the hierarchy problem are possible. In this paper, we explore a class of 5-dimensional natural SUSY theories in which SUSY is broken by the Scherk-Schwarz mechanism. We pedagogically explain how Scherk-Schwarz elegantly solves the traditional problems of 4-dimensional SUSY theories (based on the MSSM and its many variants) that usually result in an unsettling level of fine-tuning. The minimal Scherk-Schwarz set up possesses novel phenomenology, which we briefly outline. We show that achieving the observed physical Higgs mass motivates extra structure that does not significantly affect the level of tuning (always better than 10%\sim 10\%) and we explore three qualitatively different extensions: the addition of extra matter that couples to the Higgs, an extra U(1)U(1)^\prime gauge group under which the Higgs is charged and an NMSSM-like solution to the Higgs mass problem.Comment: 36 pages + appendix, 12 figure

    Auto-Concealment of Supersymmetry in Extra Dimensions

    Full text link
    In supersymmetric (SUSY) theories with extra dimensions the visible energy in sparticle decays can be significantly reduced and its energy distribution broadened, thus significantly weakening the present collider limits on SUSY. The mechanism applies when the lightest supersymmetric particle (LSP) is a bulk state-- e.g. a bulk modulino, axino, or gravitino-- the size of the extra dimensions larger than ~101410^{-14} cm, and for a broad variety of visible sparticle spectra. In such cases the lightest ordinary supersymmetric particle (LOSP), necessarily a brane-localised state, decays to the Kaluza-Klein (KK) discretuum of the LSP. This dynamically realises the compression mechanism for hiding SUSY as decays into the more numerous heavier KK LSP states are favored. We find LHC limits on right-handed slepton LOSPs evaporate, while LHC limits on stop LOSPs weaken to ~350-410 GeV compared to ~700 GeV for a stop decaying to a massless LSP. Similarly, for the searches we consider, present limits on direct production of degenerate first and second generation squarks drop to ~450 GeV compared to ~800 GeV for a squark decaying to a massless LSP. Auto-concealment typically works for a fundamental gravitational scale of MM_*~10-100 TeV, a scale sufficiently high that traditional searches for signatures of extra dimensions are mostly avoided. If superpartners are discovered, their prompt, displaced, or stopped decays can also provide new search opportunities for extra dimensions with the potential to reach MM_*~10910^9 GeV. This mechanism applies more generally than just SUSY theories, pertaining to any theory where there is a discrete quantum number shared by both brane and bulk sectors.Comment: 22 pages, 13 figures. Minor changes to match published versio

    Student, families from 23 nations welcome public for International Day

    Get PDF
    International students and their families from 23 nations spanning the Middle East, Asia, South Asia, Africa, and Western and Eastern Europe will celebrate the cultures of their countries and regions with food, music and various demonstrations on Saturday, May 12

    Secretary of the Navy appoints new NPS provost

    Get PDF
    Secretary of the Navy Donald C. Winter has appointed Dr. Leonard Ferrari as the Naval Postgraduate School’s 12th provost and chief academic officer

    A Framework for Psychophysiological Classification within a Cultural Heritage Context Using Interest

    Get PDF
    This article presents a psychophysiological construct of interest as a knowledge emotion and illustrates the importance of interest detection in a cultural heritage context. The objective of this work is to measure and classify psychophysiological reactivity in response to cultural heritage material presented as visual and audio. We present a data processing and classification framework for the classification of interest. Two studies are reported, adopting a subject-dependent approach to classify psychophysiological signals using mobile physiological sensors and the support vector machine learning algorithm. The results show that it is possible to reliably infer a state of interest from cultural heritage material using psychophysiological feature data and a machine learning approach, informing future work for the development of a real-time physiological computing system for use within an adaptive cultural heritage experience designed to adapt the provision of information to sustain the interest of the visitor

    Feeling alone among 317 million others:Disclosures of loneliness on Twitter

    Get PDF
    Increasing numbers of individuals describe themselves as feeling lonely, regardless of age, gender or geographic location. This article investigates how social media users self-disclose feelings of loneliness, and how they seek and provide support to each other. Motivated by related studies in this area, a dataset of 22,477 Twitter posts sent over a one-week period was analyzed using both qualitative and quantitative methods. Through a thematic analysis, we demonstrate that self-disclosure of perceived loneliness takes a variety of forms, from simple statements of “I’m lonely”, through to detailed self-reflections of the underlying causes of loneliness. The analysis also reveals forms of online support provided to those who are feeling lonely. Further, we conducted a quantitative linguistic content analysis of the dataset which revealed patterns in the data, including that ‘lonely’ tweets were significantly more negative than those in a control sample, with levels of negativity fluctuating throughout the week and posts sent at night being more negative than those sent in the daytime
    corecore